Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вольфрам металлический присутствии хрома

    В приведенном ниже методе никель удаляют экстракцией его диэтилдитиокарбамата хлороформом (в качестве растворителей можно также использовать хлористый и треххлористый этилен). Алюминий определяют с помощью алюминона. Со, Си, Мп, Мо, V, РЬ, 2п, С(1, Зп и 51 не мешают определению, так как они либо удаляются вместе с никелем, либо не взаимодействуют с алюминоном. Вольфрам, титан и хром не удаляются в виде карбаматов и мешают определению (рис. 31). В присутствии этих элементов необходимо проводить дополнительные операции по их выделению, например при растворении металлического образца в азотной кислоте можно осадить вольфрам в виде вольфрамовой кислоты. Методика, приведенная ниже, пригодна также для определения алюминия в меди, кобальте и марганце. Точность определения 5—15 у А1 в 12—50 мг никеля в среднем составляет 3% (максимальная ошибка 10%). [c.216]


    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]

    Определению мешают по механизму (б) — золото (1П) Ф = 1,1), рений (VII) (3000) и ртуть по механизму (в ) — серебро, хром (VI), вольфрам, ванадий, анион NO3. Обработка растворов металлической медью (цементация), предусмотренная прописью определения, устраняет мешающее влияние до 100—200 жкг золота и до 10—20 жг ртути и серебра. Присутствие в растворе 1 г железа, меди или молибдена не влияет на результаты определения. [c.206]

    Это приводит к уменьшению второго скачка потенциала. Изучение титрования шестивалентного молибдена с различными электродами из материалов, на поверхности которых наблюдается высокое перенапряжение водорода (металлическая ртуть, вольфрам, графит, тантал), показало следующее [58] второй скачок потенциала при титровании молибдена в среде серной кислоты резко возрастает в случае замены платинового электрода вольфрамовым и графитовым. При титровании с ртутным электродом наблюдается один большой скачок потенциала, соответствующий окончанию восстановления молибдена до трех- валентного состояния. Кроме того, с ртутным электродом наблюдается еще один скачок потенциала до того, как молибден перейдет в трехвалентное состояние. Положение этого скачка изменяется от титрования к титрованию и связано с моментом исчезновения ранее образовавшейся пленки на поверхности ртути. Скачка потенциала по окончании восстановления шестивалентного молибдена до пятивалентного не наблюдается. Это может быть объяснено тем, что ртуть в сильнокислой среде восстанавливает небольшие количества шестивалентного молибдена до пятивалентного с образованием эквивалентных количеств ионов одновалентной ртути (на поверхности ртути наблюдается образование пленки). Реакция протекает на поверхности электрода. При титровании раствором соли двухвалентного хрома происходит восстановление как молибдена, так и образовавшихся ионов одновалентной ртути (пленка на ртути растворяется), поэтому наблюдается скачок потенциала в точке, соответствующей окончанию восстановления молибдена до трехвалентного состояния. Очевидно, ртутный индикаторный электрод может применяться только при титровании щестивалентного молибдена в чистых растворах и в присутствии таких элементов, [c.197]


    В процессах металлообработки при всех видах шлифовальной и абразивной, электроискровой, анодомеханической, электрохимической обработки, травления деталей образуются шламы и пыли, имеющие, как правило, II и III класс токсичности. Типовой состав таких отходов 5-30% абразива, 50-80% мелкодисперсных металлических частиц, 15-20% смазочно-охлаждающих жидкостей (СОЖ). В их составе присутствуют хром, вольфрам, никель, ПАВы, нефтепродукты и т.д. Ежегодный объем образования пылей и шламов составляет около 200 тыс. тонн, они практически не перерабатываются и не учитываются, а вывозятся вместе с мусором на свалки. [c.118]

    В качестве восстановителя применяют раствор хлорида олова (II) в фосфорной кислоте [67]. При определении серы в сульфатах бария, магния, цинка, натрия [63, 68], а также при анализе сульфидных руд, тиосульфата и других серусодержащих материалов [69] раствор хлорида олова(П) и.фосфорной кислоты предварительно нагревают до удаления хлористого водорода. Восстановление этой смесью детально изучено, и усовершенствован способ приготовления реагента для восстановления [70]. Для восстановления серы рекомендовано также применять металлические титан, хром, молибден, ванадий или вольфрам в присутствии фосфорных кислот и их солей [71]. Чаще других металлов рекомендуется применение металлического хрома в присутствии фосфорной кислоты, этот восстановитель применен для определения серы в феррохроме, металлическом хроме [14] и хлориде титана (IV) [72]. Широко распространен метод восстановления серы смесями иодистоводород-ной и фосфорноватистой кислот [73], иодистоводородной кислоты и гипофосфита натрия в присутствии, уксусной [64], муравьиной [74] и хлористоводородной [75—77] кислот. Кроме того, рекомендована смесь иодистоводородной и муравьиной кислот и красного фосфора [78], а также смесь сульфата титана (111) и фосфорной кислоты [79]. [c.214]

    Металлический хром в подкисленной или щелочной перекиси водорода сравнительно инертен, он лишь медленно растворяется в ней. Кроме изучения образования пероксохроматов, много внимания уделялось также восстановлению хромового ангидрата СгОд перекисью водорода до трехвалентного хрома [250]. Молибден также в любых валентных состояниях превращается в перекись [251], причем в присутствии перекиси водорода нельзя осадить молибден в виде фосфоромолибдата [252]. Сернистый молибден реагирует с перекисью водорода с образованием сульфата, что исключает возможность применения этого сульфида в качестве смазочного вещества в контакте с перекисью. Вольфрам может растворяться в перекиси водорода с образованием вольфрамовой кислоты Н и О , и последняя может быть превращена далее в пероксоволь-фраматы. [c.339]

    Согласно литературным данным [4—6], хромоникелевая шпинель не может быть стабильной в сплавах с высоким содержанием хрома, и диффундирующий через окалину хром восстанавливает окись никеля до металлического никеля, что термодинамически вполне возможно, так как свободная энергия образования окиси никеля равна 51,3 ккал1г-ат, а окиси хрома 83,5 ккал1г-ат [7]. В результате окалина состоит из окиси хрома, легированной никелем, присутствие которого в окалине обнаружено качественным спектральным анализом для всех сплавов. При исследовании окалины мнкрорентгеноспектральным методом установлено присутствие в ней титана и ниобия. Вольфрам в окалине не обнаружен. [c.47]


Смотреть страницы где упоминается термин Вольфрам металлический присутствии хрома: [c.180]    [c.480]   
Химико-технические методы исследования (0) -- [ c.144 , c.152 ]




ПОИСК





Смотрите так же термины и статьи:

Вольфрам в металлическом вольфраме

Металлический вольфрам



© 2025 chem21.info Реклама на сайте