Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Марганец определение в присутствии хром

    Марганец и хром в стали можно определять одновременно, окисляя соответственно до бихромата и перманганата персульфатом аммония. Растворы фотометрируют при А, 440 им, соответствующей максимуму поглощения бихромата, и X 545 нм, соответствующей максимуму поглощения перманганата (см. рис. 11 и 53). Определение содержания марганца и хрома при совместном присутствии облегчается тем, что при X 545 нм поглощает только перманганат. Для расчета процентного содержания марганца и хрома в стали могут быть использованы два метода. [c.173]


    К тяжелым металлам относят свинец, медь, кадмий, цинк, хром, никель, кобальт, марганец, железо, ртуть. Присутствуют они в сточных водах процессов гальванического покрытия металлами и многих металлургических процессов, встречаются они в самых разнообразных сточных водах тяжелой и легкой промышленности, а также и в шахтных водах. Многие из них образуют токсичные соли, поэтому допускаются в водах лишь в очень малых концентрациях, и, следовательно, для их определения требуются чувствительные методы. [c.95]

    Было установлено, что из исследованных элементов определению мышьяка мешает только кадмий. В присутствии сурьмы, свинца, олова искажается первая волна мышьяка, но для определения можно использовать вторую волну, правда, с меньшей точностью определения. Трехвалентное железо, висмут и медь мешают определению мышьяка в том случае, если их количество превышает в 20 раз содержание мышьяка. Определению не мешают двухвалентное железо, цинк, алюминий, марганец, никель, кобальт, хром, натрий, калий, кальций и магний. Большинство обычно присутствующих в воде анионов также не влияет на определение мышьяка. [c.250]

    Марганец относится к элементам с переменной валентностью, поэтому для его амперометрического определе] я могут быть использованы окислительно-восстановительные методы в разделе Ванадий было уже описано определение ванадия, хрома и марганца при их совместном присутствии Разумеется, такой же метод — переведение марганца (II) в перманганат-ион и последующее титрование перманганата солью Мора по току окисления железа (II) при потенциале +1,0 в (Нас. КЭ) с платиновым вращающимся электродом— может быть применен и для определения одного марганца. Этот метод особенно рекомендуется для [c.247]

    Определение марганца в присутствии хрома и ванадия. После окисления висмутатом можно титровать марганец (VII), не восстанавливая при этом хрома (VI) и ванадия (V), титрованным рас- [c.876]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]


    Кроме бора, флуоресцирующие соединения с бензоином образуют лишь бериллий и германий (яркость их свечения на один порядок меньше, чем у бора) [50, 53], а в присутствии магния и кремнезема — сурьма и цинк [5, 75]. Но ряд элементов ослабляет флуоресценцию борного комплекса наиболее активны алюминий, железо, марганец, ванадий и хром. Поэтому при анализе минерального сырья бор следует от них отделить. Сплавление пробы с карбонатом натрия и последующее водное выщелачивание устраняет влияние многих вредных примесей. Карбонат натрия плохо растворим в 75%-ном этаноле поэтому в принятых условиях определения при конечном объеме 6 мл можно вводить лишь 1 мл его 2%-ного раствора. Такой объем принят для аликвотной части раствора пробы. [c.216]

    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]

    Определению кобальта данным методом мешают хром и марганец. /Йля устранения влияния хрома его окисляют персульфатом аммония " в присутствии азотнокислого серебра как катализатора  [c.319]

    В присутствии хрома результат определения получается повышенным хром так же, как и марганец, окисляется персульфатом аммония и затем титруется раствором соли Мора. В этом случае марганец определяют по персульфатно-арсенит-ному методу (см. т. I, стр. 161) или одновременно с марганцем в том же растворе определяют и хром (см. т. I, стр. 174). [c.94]

    Марганец определяют, как правило, из отдельной навески, но он может быть определен и из фильтрата от кремнекислоты или фильтрата от нерастворимого остатка. Если в руде присутствует хром, рационально его определить из той же навески руды одновременно с марганцем (см. стр. 127). [c.112]

    Потенциометрическое определение кобальта в стали после осаждения фенилтиогидантоиновой и тиогликолевой кислотами [921]. Методика рекомендована для определения кобальта в жаропрочных сплавах, содержащих алюминий, углерод, хром, медь, железо, марганец, молибден, никель, ниобий, фосфор, серу, тантал, титан, вольфрам, ванадий и цирконий. Она основана на избирательном осаждении кобальта тиогликолевой и фенилтиогидантоиновой кислотами и последующем титровании кобальта феррицианидом калия в присутствии этилендиамина. 0,05—0,3 г стали, содержащей от 6 до 50 мг Со, растворяют в смеси соляной и азотной кислот (3 1), прибавляют 5 мл 85%-ного раствора фосфорной кислоты, 20 мл серной кислоты (1 1) я 5 мл 70%-ной хлорной кислоты и выпаривают большую часть последней. Остаток растворяют в воде, прибавляют 10 г цитрата аммония и концентрированный раствор гидроокиси аммония до pH 8 и сверх того еще 10 мл и разбавляют водой до 250 мл. При высоком содержании железа прибавляют 4 мл тиогликолевой кислоты (при низком содержании железа этого делать не нужно), далее бумажную массу и вводят при перемешивании 35 мл раствора фенилтиогидантоиновой кислоты (4 г реагента на 100 мл этанола). Раствор кипятят 5 мин., перемешивают до коагуляции осадка и добавляют еще 5 мл раствора фенилтиогидантоиновой кислоты. Осадок отфильтровывают, промывают [c.194]

    Молибден, хром и ванадий восстанавливаются свинцом, и так как продукты, их восстановления титруются иодом, то для олова получаются повышенные результаты. Присутствие этих элементов обнаруживается по изменению окраски раствора при восстановлении олова. Молибден, например, после восстановления окрашивает раствор в коричневый цвет, а ванадий — в пурпуровый. Малые количества мышьяка не мешают определению Из остальных веществ, не мешающих титрованию, можно отметить сульфаты, фосфаты, иодиды, бромиды, фториды, железо, никель, кобальт, цинк, марганец, уран, алюминий, свинец, висмут, магний и щелочноземельные металлы. [c.339]

    Титрование раствором мышьяковистой кислоты. Этот метод значительно менее точен, чем предыдущий, но им можно определять марганец в присутствии малых количеств хрома и ванадия. Его применяют при определении марганца в сталях и иногда при анализе легких сплавов. Поскольку персульфат-ионы мешают титрованию раствором соли железа (И), то после окисления Мп до МпО персульфатом приходится титровать раствором мышьяковистой кислоты или арсенита.  [c.704]


    Марганец мешает определению, поскольку он осаждается с гидроокисью магния, подавляя впоследствии окраску комплекса магния с солохром цианином Н 200. При анализе проб, содержащих более 0,05% марганца, титан отделяют экстракцией купфероната титана хлороформом, затем перед осаждением гидроокиси магния отделяют марганец в виде перманганата цинка, добавляя окись цинка. Такая модификация метода дает возможность анализировать пробы, содержащие до 1 % марганца. Допускается также присутствие до 10% алюминия и 5% хрома. [c.53]

    Влияние хрома, если его больше 0,02%, аналогично влиянию алюминия. Однако предварительным осаждением гидроокиси хрома из аммиачного раствора в присутствии железа в качестве носителя можно устранить воздействие хрома на результаты анализа. Ионы меди снижают оптическую плотность, но в присутствии цианида калия влияние меди (до 0,03%) не сказывается на результатах анализа. Марганец, никель, ванадий (при содержании каждого из этих злементов до 0,2%) и остаточный титан (до 0,1 %) не мешают определению. Влиянием небольших концентраций гидроокиси натрия можно пренебречь. [c.54]

    Определению кадмия не мешают свинец, висмут, мышьяк, сурьма, олово, хром, алюминий, железо, марганец, цианиды, роданиды, фосфаты, сульфиты, тиосульфаты и другие ионы, обычно присутствующие в водах в концентрациях ниже 50 мг/л-. [c.289]

    При окислении хрома персульфатом аммония, (при анализе руд и сталей) присутствующий марганец окисляется до перманганата, который мешает иодометрическому определению хрома. В этом случае раствор после окисления нагревают до кипения и восстанавливают перманганат прибавлением соляной кислоты по каплям. Для удаления хлора прибавляют небольшое количество бикарбоната натрия. После охлаждения хром определяют иодометрически, как приведено выше. [c.135]

    Волна восстановления трехвалентного кобальта до двухвалентного появляется при значительно более положительном потенциале, чем волна восстановления двухвалентного кобальта до металла. Величина потенциала полуволны лежит в пределах от О до —0,5 в в зависимости от природы примененного адденда. Это дает возможность определять кобальт в присутствии значительно большего количества посторонних элементов, чем при его восстановлении до металла. Для окисления кобальта до трехвалентного и его дальнейшего полярографирования предложены различные окислители и растворы различных основных электролитов. Описана методика окисления кобальта до трехвалентного в растворе гидроокиси аммония и хлорида аммония раствором перманганата [1216], перекиси водорода или пербората натрия [62] в последнем случае волна трехвалентного кобальта появляется при потенциале —0,547 в, т. е. до волны никеля. Рекомендовано также полярографировать трехвалентный кобальт в растворе сульфосалицилата натрия [1214] или цитрата натрия [1216] после окисления перекисью водорода волна кобальта начинается почти при нулевом значении приложенного напряжения. Можно полярографировать кобальт в растворе комплексона III [1342], например после окисления с помош.ью двуокиси свинца [1123] в боратном буферном растворе при pH 8—9 в этом последнем случае определению не мешают медь, никель, марганец и цинк, хотя железо и хром должны быть удалены. Описана методика полярографирования триокса-латного комплекса трехвалентного кобальта на фоне растворов оксалата калия, ацетата аммония и уксусной кислоты [935]  [c.166]

    Метод имеет целый ряд важных достоинств он может быть применен в присутствии многих других ионов — меди, никеля, свинца, цинка и других элементов он позволяет определять не только ванадий, но все три компонента (ванадий, хром, марганец) из одной навески дает результаты высокой точности пригоден для определения весьма малых количеств ванадия, хрома и марганца (десятые и сотые доли миллиграмма в титруемом объеме раствора) может быть выполнен в мутных и обращенных растворах (последнее как раз имеет место при определении ванадия, хрома и марганца) может быть осуществлен как в макро- так и микроварианте. [c.181]

    Ход определения. Точную навеску (- 0,2—0,3 г) стали (чугуна) поместите в коническую колбу емкостью 250 мл и растворите, при осторожном нагревании под тягой, в 12—15 мл смеси кислот. Когда прекратится выделение бурых окислов азота (обычно после 10—15 минутного нагревания), разбавьте раствор 50 мл горячей воды, прибавьте 5 мл 1%-ного раствора А ЫОз и 5—7 мл 20%-ного раствора (ЫН4)23208. Далее нагрейте раствор до слабого кипения и кипятите его в течение 30—40 сек [не больше, так как иначе часть НМПО4 может разложиться с выделением осадка МпО(ОН)2]. Для завершения реакции дайте раствору 3—4 мин постоять, после чего сейчас же возможно сильнее охладите его под краном. Холодный раствор оттитруйте рабочим раствором арсенита до обесцвечивания или до перехода розовой окраски в желтую (если в стали присутствует хром). Титровать нужно возможно быстрее, так как имеющийся в растворе персульфат хотя и медленно (вследствие низкой температуры), но все же продолжает окислять марганец, восстановленный при титровании, обратно в НМПО4. [c.394]

    Подтверждением увеличения интенсивности линий всех изучаемых элементов в присутствии магнитного поля с носителем служат сравнительные градуировочные графики определения ряда примесей, полученные при съемке стандартов в магнитом поле и без него при одних и тех же условиях. Из рис. 7 видно, что чувствительность определения магния, хрома и алюминия, а также и других изученных в работе элементов (марганец, никель, кальций, железо) увеличивается на 0,5—1 порядок. При этом относительное стапдартпое от1 лоненпе метода тонкого слоя при паложепип магнитного поля улучшается и находится в пределах 0,1—0,12. [c.134]

    Определение марганца в присутствии хрома и ванадия. После окисления висмутатом можно титровать марганец (VII), не восстанавливая при 45-22Л0 [c.705]

    Определение никеля фотоколориметрическим методом. Метод основан на реакции образования растворимого окрашенного в красный цвет комплексного соединения никеля с диметилглиоксимом в щелочной среде в присутствии окислителя. Состав образуемого комплекса пока полностью не установлен. Определению мешает большой избыток окислителя, так как он может вызвать обесцвечивание раствора. Определению мешают также железо, хром и марганец, поэтому при определении их связывают в растворимые бесцветные комплексные соединения сегнетовой солью (виннокислый калий-натрий). В этих условиях определению не мешают кобальт до 1,5%, молибден до 3%, хром до 18%, вольфрам до 18 %, медь до 2%, ванадий до 1 %. Измерение интенсивности окраски можно проводить визуальным методом, методом шкалы эталонных растворов, на фотоколориметре и спектрофотометре. [c.308]

    Влияние природы и концентрации ионов металлов. Как известно, ионы РЬ, 8п, В1, Те, Сс1, Си, Ag и других металлов восстанавливаются на катоде из растворов простых солей в отсутствие специальных добавок при сравнительно малой, а некоторые из нух (РЬ, 5п, Ад) при едва заметной, катодной поляризации. Образующиеся осадки этих металлов имеют крупнозернистую структуру или растут в виде отдельных изолированных кристаллов (или агрегатов кристаллов), ориентированных по линиям поступления ионов, как, например, осадки свинца, серебра из азотнокислых растворов, олова из сернокислых растворов и др. Только в присутствии определенных для дачного электролита поверхностно-актий-ных вендеств (ПАВ), вызывающих сильное торможение процесса, некоторые из этих металлов образуют мелкозернистые осадки, часто с ориентированными субмикроскопическими частицами. Наоборот, металлы группы железа, платины, а также хром и марганец выделяются из растворов простых солей даже в отсутствие ПАВ с высоким перенапряжением и образуют очень мелкозернистые осадки с волокнистой структурой. [c.340]

    Микротвердость бывших аустенитных участков можно увели-чить с помощью термической обработки, однако закалка белого чугуна нредставляет определенную трудность, сопровождается воз< никновением микротрещин и приводит к снижению стойкости при многократных ударных нагрузках. В связи с этим основным методом повышения твердости бывших аустенитных участков следует считать легирование белого чугуна элементами, способствующими переохлаждению аустенита и переводу его в мартенсит при обычных скоростях охлаждения отливок. Такими элементами являются хром, никель (при совместном присутствии), марганец, молибден и некоторые другие. [c.34]

    Шестивлентный вольфрам не дает с 8-оксихинолин-5-суль-фокислотой каких-либо окрашенных соединений и при условиях Определения молибдена не восстанавливается, а поэтому не влияет на результаты определения молибдена. Однако в присутствии больших количеств вольфрама (больше 10 мг) нужно увеличить количество добавляемого реагента. Определению молибдена мешают ванадий, двухвалентное железо, кобальт, цинк, большие количества меди, комплексон III и винная кислота. Кальций, магний, барий, никель, кадмий, двухвалентный марганец, трехвалентный хром, алюминий, торий, небольшие количества висмута и урана, цианид, щавелевая кислота не мешают определению молибдена. [c.228]

    Проводится титриметрически персульфатно-серебряным методом. Марганец в сернокисло-фосфорнокислом растворе окисляют персульфатом аммония в присутствии нитрата серебра до перманганата. Раствор окрашивается в характерный фиолетовый цвет. Полученную марганцевую кислоту титруют стандартным раствором арсенита или арсенит-нитрита натрия. Ионы Ag+ удаляют из раствора добавлением хлорида натрия. Мешают определению марганца высокие содержания хрома (выше 2 %)  [c.333]

    Определение кобальта в виде комплекса с диэтилентриами-ном[1480]. Диэтилентриамин (Н2ЫСН2СН2)2МН образует с ионами кобальта при пропускании через раствор воздуха окрашенное соединение, максимум светопоглощения которого находится при 460 ммк. Комплекс устойчив при pH 1 —14. Медь, хром и марганец мешают, однако присутствие никеля допустимо, так как комплекс никеля с диэтилентриамином имеет максимум поглощения при 540 и 850 ммк. Поэтому кобальт можно определить в присутствии никеля, измеряя оптическую плотность раствора при 460 ммк и вводя поправку на содержание никеля после измерения поглощения при 850 ммк. Содержание кобальта находят по калибровочной кривой закон Бера соблюдается в пределах от 0,001 до 0,006 г-ион/л Со. [c.144]

    Самую большую группу соединений с известными структурами образуют соединения типа МО (ОН), где М — алюминий, скандий, иттрий, ванадий, хром, марганец, железо, кобальт, галлий и индий. Ряд соединений МО (ОН), так же как гидроксиды трехвалентных металлов и оксиды М2О3 алюминия и железа, имеют а- и у-модификации. Так называемый p-FeO(OH), строго говоря, не является гидроксид-оксидом он имеет структуру а-МпОг и устойчив только в присутствии определенных ионов, таких, как С1 , внедренных в пустоты каркаса [3J. Темно-коричневый б-FeO (ОН), обладающий ярко выраженными магнитными свойствами, получают быстрым окислением Ре (ОН) 2 в растворе NaOH он имеет очень простую структуру, в основе которой лежит гексагональная плотнейшая упаковка О (ОН), а ионы РеЗ+ заселяют определенные пустоты. Результаты исследования магнитных свойств лучше согласуются со статистическим распределением ионов металла по всем октаэдрическим позициям, чем с частичной заселенностью некоторых тетраэдрических позиций, как предполагали ранее [4]. Структура Е-РеО(ОН) рассматривается ниже. [c.366]

    Ход анализа. Навеску 2 г металла растворяют при нагревании в смеси. 25 мл серной (1 5) а 5 мл фосфорной кислот, после растворения навески окйсляют железо азотной кислотой, упаривают до дыма, охлаждают, прибавляют 50 мл воды, 5 мл 1%-ного раствора нитрата серебра, нагревают до кипения и окисляют хром и могущий присутствовать в пробе марганец 10 мл 10%-ного раствора персульфата аммония. Избыток персульфата удаляют кипячением, а марганцевую кислоту восстанавливают хлоридом натрия (5 мл 5%-ного раствора). После охлаждения титруют раствором соли Мора, концентрация которого определяется количеством хрома в титруемом растворе. Можно титровать либо весь раствор, либо, переведя его в мерную колбу, титровать только аликвотную часть (в зависимости от содержания хрома и от взятой навески). Из этого же раствора можно определять и ванадий, как указано в соответствующем разделе. Описанным методом определяют от 0,03 до 0,15% хрома в различных чугунах, сталях и в стандартном образце стали № 20-Г. Метод считается наилучшим (по сравнению с колориметрическим или обычным объемным) методом определения хрома. [c.339]

    Описанное определение хрома и общего железа можно провести также в пробах, в которых определяется железо (И). В этом случае от раствора, переведенного в мерную колбу после разложения пробы смесью серной и фосфорной кислот, отбирают отдельные аликвотные чггсти для определения железа (II), хрома и железа (III). Для определения хрома отбирают 50 мл и окисляют его персульфатом аммония с добавкой 1%-ного раствора нитрата серебра (особенно если присутствует марганец). После разрушения избытка окислителя кипячением раствор переносят в мерную колбу емкостью 200—250 мл, доводят до метки водой. Если присутствует марганец, то предварительно кипятят раствор с небольшим количеством соляной кислоты или хлорида натрия. Титруют аликвотную часть (20 мл) 0,1 н. раствором соли Мора. Титр раствора соли Мора устанавливают по стандартному раствору бихромата, добавив в него несколько капель смеси серкой и фосфорной кислот, применяемой для разложения пробы (см. Железо ). Общее железо определяют в 25 м.л первоначального раствора, восстанавливая и титруя его, как описано выше, раствором бихромата калия. ] 1ожно применять другие окислители — перман- [c.340]

    При добавлении пиридина к слабокислому анализируемому раствору в нем, создается pH, приблизительно равный 6,5. В этих условиях осаждаются железо (III), алюминий, хром, уран, индий, галлий, титан,, цирконий, тОрий и скандий. В то же время марганец, кобальт, никель и цинк (а также и металлй сероводородной группы — медь и кадмий) образуют с пиридином ко мплексные ионы состава Me( 5HgN)2 , остающиеся в растворе. Для создания в растворе указанного значения pH при определении металлов, присутствующих в обычных аналитических концентрациях, требуется добавление пиридина в избытке около 8 эквивалентов. [c.111]

    Этот метод не отличается большой чувствительностью (предел чувствительности метода 0,01 % урана), но применению его мешает относительно небольшое число элементов. Основными элементами, влияющими на определение урана, являются, помимо хрома, молибден (VI) и ванадий (V), которые также дают окраску с перекисью водорода в карбонатной среде, хотя значительно кенее интенсивную, чем уран. Имеются указания на то, что ванадий не мешает колориметрированию урана в растворе, содержащем едкий натр и перекись натрия. Значительное влияние оказывает марганец, что обусловлено заметной окклюзией урана двуокисью марганца и каталитическим разложением перекиси. Большие количества железа также каталитически разлагают перекись кроме того, выделяющимся осадком захватывается некоторая часть урана. Для исключения мешающего влияния железа колориметрирование рекомендуется осуществлять в аммиачной среде в присутствии тартрата. [c.532]

    Персульфатньш метод. Этот метод основан на измерении интенсивности желтой окраски сернокислого раствора, содержаш его церий (IV), полученный в результате окисления персульфатом аммония в присутствии нитрата серебра. Другие редкоземельные элементы не оказывают влияния на определение. Марганец и хром, окисляюш,иеся в этих условиях соответственно до перманганата и хромата, должны отсутствовать. Мешают определению также хлориды, фториды и фосфаты. [c.633]

    Перекись водорода и перекись натрия препятствуют полному осаждению циркония на холоду при кипячении в их присутствии цирконий полностью осаждается. При осаждении гидроокиси циркония щелочами отделяются следующие элементы мюминий, галлий, цинк, молибден, вольфрам, ванадий, бериллий, мышьяк и Сурьма. В присутствии карбонатов отделяется уран. Для этой цели к щелочи прибавляют I—2 г Na Og. Прибавление перекиси водорода улучшает отделение. В осадке с цирконием находятся железо, титан, марганец, хром, кобальт, никель, медь, кадмий, серебро, индий, таллий, торий и редкоземельные элементы. Магний и щелочноземельные металлы при достаточном содержании карбонатов также полностью осаждаются. Этот метод может иметь некоторое значение для отделения циркония от молибдена, вольфрама, ванадия, алюминия и бериллия. По данным Руффа [700], бериллий не отделяется щелочью количественно, так же как и алюминий, особенно в присутствии больших количеств аммонийных солей. Осаждение гидроокиси циркония аммиаком может применяться при гравиметрическом определении циркония. Но этот метод используется лишь в случае отсутствия примесей, осаждаемых аммиаком. [c.53]

    Мешающие вещества. Реакция с дифенилкарбазидом почти специфична для хрома. Молибден(У1) и ртуть(П) образуют с ди" фенилкарбазидом окрашенные соединения, но при том значении pH, при котором определяют хром, оба эти элемента допустимы в концентрациях до 200 мг/л. Ванадий мешает, но его присутствие Допустимо в количествах, превышающих содержание хрома в 10 раз. Железо в условиях проведения определения не мешает, Марганец при большом его содержании в пробе и при отсутствий катализатора нитрата серебра может выпасть в осадок в вида гидрата диоксида марганца осадок тогда отделяют фильтрова- нием через стеклянную пористую пластинку или через стеклян- ную вату. [c.152]

    Со—несколько капель раствора+комплексон+уксусная ки-слота+2—3 капли сульфата церия (прибавлять медленно) рубиновое окрашивание комплексоната кобальта. Аналогичную реакцию дает марганец (комплексонат марганца). После прибавления пёрекиси окраска, вызванная марганцем, исчезает, между тем как й присутствии кобальта она изменяется в фиолетово-синюю. Определение можно проводить также окислением при нагревании перекисью водорода. Мешает только хром. В слабоаммиачной среде кобальт окисляется перекисью совершенно селективно. Не мешают марганец и хром, переходящий в хромат. [c.169]


Смотреть страницы где упоминается термин Марганец определение в присутствии хром: [c.495]    [c.172]    [c.66]    [c.388]    [c.225]    [c.20]    [c.57]    [c.366]    [c.232]    [c.68]    [c.138]    [c.142]   
Фотометрический анализ (1968) -- [ c.142 ]




ПОИСК





Смотрите так же термины и статьи:

Марганец в присутствии хрома

Марганец определение

Определение хрома и марганца



© 2024 chem21.info Реклама на сайте