Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматическая адаптация водорослей

    Для того чтобы эффективно поглощать свет, пропускаемый окружающей средой, пигмент должен иметь цвет, дополнительный к цвету окружающей среды. Энгельман назвал это явление дополнительной хроматической адаптацией в отличие от мимикрии — цветовой адаптации, при которой организмы принимают окраску, сливающуюся с окружающей. Ольтмаис [133, 140] возражал против теории Энгельмана, полагая, что, вертикальное распределение водорослей определяется скорее интенсивностью, чем окраской преобладающего света. Этот спор продолжается свыше 50 лет и расширился от начальной проблемы распределения водорослей до выделения двух родственных проблем 1) участие фикобилинов в качестве сенсибилизаторов в фотосинтезе, без чего хроматическая адаптация водорослей не имела бы смысла, и 2) изменение адаптации окрашенных водорослей на искусственном свету. В этой дискуссии одни авторы [135, 137, 141, 153, 154, 162, 186, 187, 195, 200] поддерживали гипотезу [c.423]


    А. А. Рихтер (1871—1947) критически рассмотрел теорию хроматической адаптации морских водорослей и пришел к заключению, что приспособление красных, бурых и зеленых водорослей к различным глубинам определяется не столько особенностями спектрального состава света на разных глубинах, сколько степенью светолюбия этих растений. [c.8]

    Как упоминалось выше, это явление вызвало большую дискуссию. Энгельман не сомневался, что оно вызвано дополнительной хроматической адаптацией . Водоросли зеленеют на красном свету, синеют на зеленом, желтеют на сине-зеленом и синеют на желтом. Эти изменения совершаются только в живых клетках, причем они отличны и часто даже противоположны явлениям обесцвечивания, наблюдаемым у мертвых клеток и экстрактов пигментов. Цвет, приобретаемый под влиянием цветного света, часто сохраняется [c.427]

    В освещении этого вопроса автор книги не уделил должного внимания работам А, А. Рихтера, доказавшего наличие хроматической адаптации у водорослей и, в частности, сдвиг максимума фотосинтеза в более преломляемую часть спектра у красных водорослей (Изе. Л1Г СССР, 935. 1914). Прим. ред.) [c.424]

    Растения живут в световом поле , характер которого зависит от климатической зоны и ее естественной среды и меняется также в зависимости от времени года, времени дня и метеорологических условий. Для растения важны три характеристики естественных световых полей их полная интенсивность, спектральный состав и периодичность. Имеются убедительные доказательства того, что растения приспосабливают свои жизненные процессы вообще и фотосинтетический аппарат в частности ко всем этим трем факторам. Приспособление к интенсивности проявляется в различном характере тенелюбивых и светолюбивых растений (теневые и солнечные растения) приспособление к окраске света (хроматическая адаптация) наиболее ярко иллюстрируется фактом существования красных водорослей в глубинах моря приспособление к периодичности видно из различий между растениями длинного дня (растения преимущественно арктической зоны) и растениями короткого дня (растения преимущественно умеренной и тропической зон). [c.139]

    Фикобилины, на долю которых приходится у некоторых водорослей до 60% всего белка, образуют достаточно эффективную светособирающую систему, хотя передача энергии между этими пигментами происходит все же не столь эффективно, как в хлоропластах высших растений. Есть водоросли, у которых соотношение различных фикобилинов меняется в зависимости от спектрального состава света. Такие водоросли при освещении светом разных длин волн меняют свою окраску. Это явление получило название хроматической адаптации. Если, например, выращивать такие водоросли на красном свету, то у них будет преобладать фикоцианин, если же освещать их зеленым светом, то главное место займет фикоэритрин. Подобная приспособляемость позволяет водорослям, растущим на разной глубине, поглощать достаточно света, необходимого для фотосинтеза, хотя свет с увеличением глубины меняет свой спектральный состав, так как часть его энергии при прохождении через слой воды поглощается или же рассеивается молекулами воды или взвешенными в воде частицами. Не все водоросли обладают способностью к хроматической адаптации. Некоторые из них выживают на разной глубине благодаря тому, что с увеличением глубины они синтезируют больше пигмента. [c.117]


    Вопрос об участии дополнительных пигментов в процессе фотосинтеза имеет не только теоретическое значение, но и практическое. Многие растения живут в условиях сильно измененного спектрального состава солнечного света, и часто в таких условиях" 1де преобладают зеленые и сине-фиолетовые лучи, поглощаемые каротиноидами и фикобилинами. Особенно резко меняется спектральный состав света в водной среде. Широко известно явление хроматической адаптации водорослей. На оольших глубинах, где преобладают зеленые и сине-фиолетовые лучи, доминируют те формы ео-дорослей, которые содержат дополнительные пигменты, поглощающие эти лучи. Каротиноиды бурых водорослей поглощают сьне-фиолето-вые лучи, фикоэритрин красных водорослей - зеленые лучи. Благодаря этим пигментам растения полнее используют свет, достигающий больших глуоин, [c.136]

    Для наземных растений приспособление к интенсивности более важно, чем хроматическая адаптация, так как колебания в интенсивности света более сильно выражены, чем колебания в его спектральном составе. Соответственно с этим наземные растения не способны к сколько-нибудь суш ествепному изменению их цвета колебания в отношениях хлорофилла [а] [Ъ] или [каротиноиды] [хлорофилл] могут вызвать небольшое изменение в спектре поглош,ения листьев, но не дают цветовых эффектов, сравнимых с эффектами, обусловленными фикоцианином, фикоэритрином или даже фукоксантолом у водорослей. [c.424]

    Последнее возражение, которое можно сделать против концепции Энгельмана, относится к практической пользе хроматической адаптации для фотосинтеза водорослей. Однако недавнее подтверждение доступности для фотосинтеза световой энергии, поглощенной фикобилинами, снимает и это возражение [c.429]

    Особое внимание было обращено на зависимость максимальной производительности и светового подавления окрашенных водорослей от вертикального распределения этих растений под водой. Энгельман предположил (см. т. I, гл. XV, стр. 423), что цвет бурых и в особенности красных водорослей является результатом хроматической адаптации преимущественно к синевато-зеленому свету, который превалирует глубоко под водой. Бертольд [2] и Ольтманс [12] полагали, что окрашенные водоросли адаптированы не столько к спектральному составу света их естественной среды, сколько к его низкой интенсивности. Возникшая дискуссия, которая привела к почти полному подтверждению энгельмановской теории хроматической адаптации, будет обсуждаться в гл. XXX. Однако тот факт, что для состава пигментной системы глубоководных водорослей основное значение имеет хроматическая адаптация, не означает еще, что эти водо - [c.422]

    По сравнению с измерениями Эмерсона и Льюиса, а также Блинкса и Гаксо все более ранние исследования роли фикобилинов при фотосинтезе имеют лишь второстепенное значение. Большинство из этих исследований проведено на красных водорослях и послужило для создания энгельмановской теории дополнительной хроматической адаптации этих водорослей к сине-зеленому свету, преобладающему под водой. Совершенно очевидно, что цветовая адаптация полезна водорослям только в том случае, если свет, поглощенный красными пигментами, может быть использован для фотосинтеза. Вследствие того, что красный и сине-фиолетовый свет поглощается водой, полное [c.628]

    Подобные же результаты были получены Хардером [44], который пришел к заключению, что в природе имеют место и хроматическая адаптация, и адаптация к интенсивности света. Он, так же как и Эрке [49], считал, что результаты измерений скорости фотосинтеза красных водорослей указывают на активное участие фикобилинов в процессе фотосинтеза. Того же мнения придерживались Монфорт [72] и Шмидт [80], которые нашли, что спектральный максимум про- [c.630]

    Таким образом, предварительные наблюдения над относительной эффективностью фотосинтеза красных водорослей на свету различного спектрального состава подтверждают (и даже более согласованно, чем наблюдения над бурыми водорослями), что сопутствующие пигменты этих организмов являются активными сенсибилизаторами фотосинтеза и что энгельмановская теория хроматической адаптации в основе своей представляется правильной. И как бы, в сущности, могло быть иначе Трудно предположить, что появление у глубоководных водорослей оранжевых или красных пигментов представляет собой простую случайность. Условия светового поля, в котором живут эти растения, явно вынуждают их улавливать и использовать для поддержания своего существования единственное излучение, интенсивность которого на больших глубинах имеет сколько-нибудь существенное значение, — излучение средней области видимого спектра. [c.631]

    Изучение спектральной зависимости фотосинтеза может рассматриваться как хороший метод получения информации о механизме фотосинтеза. В естественных же условиях сильное изменение спектра встречается лишь на больших глубинах, куда труднее проникают длинноволновые лучи и где обитают, например, красные водоросли. Спектральный состав солнечного света, поглощаемого наземными растениями, испытывает значительно более слабое изменение в зависимости от времени суток и года. Рассеянный свет, достигающий нижних листьев в загущенных посевах сельскохозяйственных растений или листьев травянистых растений под пологом леса, содержит относительно меньше длинноволновой радиации. В связи с этим повышенное содержание хлорофилла и уменьшение отношения хл а/хл в в таких теневых листьях может считаться приспособительным признаком, так как хлорофилл в поглощает более коротковолновый свет, чем хлорофилл а. Приспособление растений к измененному опектральному составу света получило название хроматической адаптации. [c.115]


    Значение фикобилинов. Максимумы поглощения света у фикобилинов находятся между двумя максимумами поглощения у хлорофилла в оранжевой, желтой и зеленой частях спектра (см. рис. 3.2). Значение такого распределения максимумов поглощения становится понятным, если вспомнить оптические свойства воды, которая поглощает прежде всего длинноволновые лучи. На глубине 34 м в морях и океанах полностью исчезают красные лучи, на глубине 177 м -желтые, на глубине 322 м — зеленые и, наконец, на глубину свыше 500 м не проникают даже синие и фиолетовые лучи. В связи с таким изменением качественного состава света в верхних слоях морей и океанов обитают преимущественно зеленые водоросли, глубже — синезеленые и еще глубже -водоросли с красной окраской. В. Т. Энгельман назвал это явление хроматической комплементарной адаптацией водорослей. По его наблюдениям (1881 —1884), наиболее интенсивная ассимиляция СОг у водорослей с различной окраской соответствует максимумам поглощения света пигментными системами этих водорослей. Русский исследователь Н. М. Гайдуков (1903) экспериментально показал, что если культуру синезеленой водоросли Os illaria san ta выращивать на свету разного спектрального состава, то у нее развивается дополнительная (комплементарная) окраска. При освещении зеленым светом водоросли становятся оранжево-красными, а при дей- [c.74]

    К исходу суток обилие фитопланктона редко возвращается к начальному, что наблюдалось также в условиях стратифицированного Сиверского озера (Маркевич и др., 1982). Из трех рассматриваемых для водохранилищ случаев в одном отмечен тренд к нарастанию хлорофилла, в другом - к снижению, а в третьем - отсутствию каких-либо изменений. Вероятно каждая ситуация зависит от фазы сезонной сукцессии сообщества. Суточные флуктуации активности фитопланктона связаны с изменениями скоростей фотосинтеза и клеточного деления, питательных потребностей, плавучести, биолюминесценции и т.д. Обилие водорослей в течение суток регулируется ритмикой их размножения (Елизарова, 1982), ритмикой питания зоопланктона (Крючкова, 1989), миграциями подвижных форм и переносом с токами воды пассивных . Репродукция фитопланктона происходит в основном в вечерние или ночные часы, а потребление фитофагами - в ночное время (Maulood et al., 1978). Суточный период, соизмеримый со скоростями роста водорослей, рассматривается как некий экологический масштаб, в пределах которого реализуются механизмы физиологической адаптации, позволяющие оптимизировать удельную фотосинтетическую продуктивность (Reynolds, 1990). В ответ на изменения освещенности изменяется содержание пигментов в клетке. В этом проявляется хроматическая адаптация, происходящая в период, соизмеримый с временем генерации (от нескольких часов до нескольких суток), и у новых поколений развиваются новые фотосинтетические возможности. [c.75]


Смотреть страницы где упоминается термин Хроматическая адаптация водорослей: [c.426]    [c.428]    [c.428]    [c.422]    [c.629]    [c.630]    [c.632]    [c.116]    [c.75]   
Фотосинтез 1951 (1951) -- [ c.423 , c.424 , c.425 , c.426 , c.427 , c.428 ]




ПОИСК







© 2025 chem21.info Реклама на сайте