Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поглощение света максимумы

    Положение максимума поглощенного света [c.495]

    В кислой форме и-нитрофенола на атоме кислорода уже нет отрицательного заряда. Неподеленные электронные пары кислорода гораздо труднее вовлекаются в делокализацию поэтому энергетический уровень первого возбужденного электронного состояния оказывается выше, чем у основной формы. Поглощение света имеет максимум при 320 нм, который приходится на начало ультрафиолетовой области, и вследствие этого соединение имеет бледную желто-зеленую окраску. Фенолфталеин, бесцветный в кислой среде и розовый в основной среде, имеет более сложную молекулу, которая в зависимости от кислотности среды изменяется подобным же образом. [c.307]


    Аналитические признаки — такие свойства анализируемого вещества или продуктов его превращения, которые позволяют судить о наличии в нем тех или иных компонентов. Характерные аналитические признаки — цвет, запах, угол вращения плоскости поляризации света, радиоактивность, способность к взаимодействию электромагнитным излучением (например, наличие характеристических полос в ИК-спектрах поглощения или максимумов в спектрах поглощения в видимой и УФ-области спектра) и др. [c.13]

    Большое влияние на поглощение света органическими соединениями оказывает пространственное расположение атомов в их молекулах. Если молекула расположена в одной плоскости (копланарна), то происходит перекрывание облаков я-электронов, облегчается их смещение по цепочке сопряженных двойных связей. Нарушение плоскостности молекулы затрудняет взаимодействие я-электронов, что сказывается на поглощении света максимум поглощения сдвигается в сторону более коротких волн (цвет повышается). [c.31]

    При повороте осей симметрии облаков тг-электронов соседних атомов на 90° по отношению друг к другу взаимодействие тг-электронов полностью прекращается, что означает фактический разрыв в этом месте цепочки сопряженных двойных связей. Однако и меньшее нарушение плоскостного строения, не приводящее к полному прекраш,ению взаимодействия соседних тг-электронов и полному разобщению участков цепи сопряжения, лежащих по обе стороны от места нарушения параллельности осей симметрии электронных облаков, сказывается на поглощении света максимум поглощения сдвигается в сторону более коротких волн. [c.49]

    Ион [Сг(Н20)бР+ окрашен в зеленый цвет, а ион [ o(H20)6] - — в красный цвет. Указать соотношение длин волн, отвечающих максимумам поглощения света этими ионами а) Хсг > Ясо б) сг = со  [c.212]

    С целью выяснения механизма взаимодействия ингибитора с пленкообразующим были исследованы инфракрасные спектры поглощения пленками чистой олифы и олифы, модифицированной хроматом гуанидина (рис. 9.3). Было установлено, что интенсивность полос поглощения хромат-ионов (800—900 см ) после отверждения пленок и особенно после их термо- и свето-старения снижается. Это свидетельствует об уменьшении содержания в пленке шестивалентного хрома вследствие образования комплексных соединений с карбоксильными и оксидными группами масляной пленки. Полосы поглощения в области частот 1600 и 3100 СМ характерны для различных колебаний КНг-группы. После отверждения пленок и их старения наблюдается заметное уменьшение интенсивности и для этих полос, но при этом появляется полоса поглощения с максимумом при частоте 1580 ск и увеличивается поглощение при частоте [c.171]


    У окрашенных веществ максимум поглощения света в большинстве случаев находится в видимой области спектра, однако он может быть и в ближней ультрафиолетовой области, как, например, у хромата калия (см. рис. 4.3, кривую /), или в ближней инфракрасной области, как у раствора сульфата меди (кривая 2). [c.181]

    В основном состоянии связь между компонентами КПЗ осуществляется главным образом за счет электростатического взаимодействия. Разность энергий возбужденного и основного состояния равна энергии перехода электрона, т. е. энергии поглощенного света в максимуме полосы МПЗ. [c.7]

    Определенный объем V раствора вещества А помещают в кювету толщиной I и облучают различные промежутки времени At, измеряя после каждого промежутка At оптическую плотность вещества В. Оптическую плотность лучше измерять в максимуме поглощения (погрешность измерений при этом минимальна). Далее строят зависимость оптической плотности от количества поглощенного света и определяют квантовый выход, пользуясь соответствующими формулами. [c.261]

    Электронные спектры сопряженных систем. Наличие системы сопряженных кратных связей вносит принципиальные изменения в спектры в этих случаях наблюдается изменение и максимума и интенсивности поглощения. В таких системах полосы поглощения невозможно приписать отдельным структурным элементам, ответственной за поглощение света становится вся система сопряженных связей. Молекулярные орбитали простых сопряженных систем, например 1,3-бутадиена, можно рассчитать теоретически [54]. Сравнение относительного расположения энергетических уровней бутадиена с уровнями изолированных двойных связей этилена показывает, что энергия высшей занятой молекулярной орбитали увеличилась, а энергия низшей незанятой л-орбита-ли, наоборот, уменьшилась (рис. [c.233]

    Применение светофильтров расширяет возможности применения колориметрии чем уже полоса пропускания света определенной длины волны и чем ближе она к максимуму светопоглощения раствора анализируемого вещества, тем более точны результаты анализа, так как достигается более точное следование закону Бера, справедливому для монохроматического света. При этом нужно стремиться, чтобы светофильтр соответствовал также и минимуму поглощения света примесями веществ, присутствующих в растворе. Например, применяя смесь 50% ацетона и 50% воды, в которой растворены соли железа и никеля, можно устранить влияние никеля на определение железа подбором соответствующих светофильтров. [c.466]

    В соответствии с теорией, экспериментальные исследования поглощения света золями золота с различным размером частиц показывают, что с увеличением дисперсности золей максимум поглощения сдвигается в сторону меньших длин волн. [c.167]

    Важным примером делокализации и поглощения энергии является хлорофилл, который обсуждался в послесловии к гл. 20. Ароматическое кольцо, окружающее ион Mg , представляет собой протяженную делокализо-ванную систему, образуемую порфирином (см. рис. 20-19). Электронные энергетические уровни этой системы обусловливают поглощение света с одним максимумом в фиолетовой области, при 430 нм, и вторым максимумом в красной области, при 690 нм (см. рис. 20-22). При поглощении света молекулой хлорофилла ее электрон возбуждается на более высокий уровень это позволяет хлорофиллу восстанавливать ионы Ге " в ферре-доксине, белке с молекулярной массой 13000, который содержит два атома железа, координированные к сере. Последующее окисление ферредоксина служит источником энергии для протекания других реакций, которые в конце концов приводят к расщеплению воды, восстановлению диоксида углерода и, наконец, к синтезу глюкозы, С НиОв. [c.307]

    Эти эффекты встречаются для всех видов излучения, включая поглощение и дисперсию звука. Поскольку гл. 16 посвящена методам ядерного магнитного резонанса и электронного парамагнитного резонанса, можно отметить, что в этих случаях явления поглощения и дисперсии аналогичны тем, которые обсуждались выше. С точки зрения классической физики эти явления объясняются уменьшением амплитуды колебаний гармонических осцилляторов. Когда атомные или молекулярные осцилляторы начинают двигаться под действием световой волны, они поглощают, и поглощение имеет максимум при резонансной частоте. Поскольку осциллирующие электроны излучают свет, взаимодействие рассеянного света с падающим излучением приводит к дисперсии. [c.484]

    На рис. 1 изображена кривая поглощения витамина в ультрафиолетовом свете. Максимум поглощения для витамина к установлен в 351 — 352 нм, ЕЦм = 1460. Биологическая активность витамина к составляет 40% от биологической активности витамина А . Витамин к в кристаллическом виде не получен. [c.14]


    Введение заместителей снимает запрет и увеличивает интенсивность поглощения света Так, молярный коэф. поглощения ( цис) фенола в 7, анилина в 8, нитробензола в 45, 4-нит-ро нола в 56,4-нитроанилина в 72 раза больше бензола (щля длинноволновых максимумов). [c.328]

    Фурфурол в пентозы пересчитывают по ранее приведенной формуле. Для получения правильных результатов необходимо оптическую плотность растворов измерять на спектрофотометре вскоре после отгонки фурфурола, чтобы исключить искажение результатов из-за присутствия оксиметилфурфурола, максимум поглощения света которого не совпадает с максимумом поглощения света фурфурола. [c.61]

    Характеристикой спектра поглощения является положение максимумов (минимумов) поглощения света веществом, а также интенсивность поглощения, что характеризуется оптической плотностью (О) или удельным показателем поглощения ( 1см) при определенных длинах волн. [c.49]

    Другим доказательством существования реакций горячих радикалов, могут служить данные о фотолизе метилподида. Алкилиодиды имеют непрерывный спектр поглощения в области около 2500—2600 А с максимумом вблизи 2600 А. В этой области первичными процессами, сопровождающими поглощение света, являются процессы образования атомов иода и алкильного радикала. В случае метилиодида энергия связи С—I примерно равна 55 ккал. Если атом I находится в основном состоянии Рз/ , то избыток энергии ( 57 ккал) распределяется между I и СН3. Еслп атом I возбужден ( А/з), то избыток равен 35 ккал. Вследствие различия масс по крахгаей мере /в этого избытка энергии должно быть отдано радикалам СНд. Следовательно, если нет какой-нибудь быстрой реакции, включающей горячие метильные радикалы , то, по-видимому, они должны находиться в этой системе. [c.345]

    Возбуждение электрона со связывающей я-орбитали на разрыхляющую я -орбиталь молекулы С2Н4 обусловливает полосу поглощения с максимумом при 171 нм (58 500 см ). Этот л -> п -переход разрешен, потому что значение приблизительно равно Ненасыщенные углеводороды типа этилена поглощают свет при больших длинах волн (меньших энергиях), чем насыщенные углеводороды. Например, насыщенный углеводород этан не обнаруживает сильного поглощения до 160 нм. Это означает, что в углеводородах разность энергий у а-связывающих и а -разрых-ляющих орбиталей больше, чем разность энергий между я-связывающей и я -разрыхляющей орбиталями. По данной причине принято не обращать внимание на ст -уровни ненасыщенных углеводородов, рассматривая только их я- и я -уровни. На рис. 13-39 показаны пространственное расположение и относительные энергии я- и я -орбиталей молекулы С2Н4. [c.593]

    Проследить связь между окраской комплекса иона переходного ме-тал.та, обусловленной d — -переходом, и Dq проще всего на примере -комплекса, например комплекса Ti " в октаэдрическом поле. Основное состояние свободного иона описывается термом О, и, как указывалось ранее, вырожденные -уровни расщепляются октаэдрическим полем на совокупность из трехкратно вырожденного -состояния и двукратно вырожденного Е -состояния. Расщеп.тение составляет 10 Dq (рис. 10.7). С увеличением Dq возрастает и энергия АЕ (а следовательно, и частота) перехода. Тангенс угла наклона линий п Е составляет соответственно -ADq и + 6Dq. Величину А (см ) можно получить непосредственно из частоты полосы поглощения. Например,. максимум полосы поглощения Ti(H,0)g лежит при 5000 А (20000 см ). Величина А для воды, связанной с Ti , составляет око.ю 20000 см (Dq равно 2000 см ). Поскольку этот переход происходит с поглощением желто-зеленой компоненты видимого света, пропущенный свет пурпурный (голубой + + красный). При изменении лиганда меняется и окраска комплекса. Цвет раствора дополнителен к поглощенному (или поглощенным) цвету, поскольку окраску определяют линии пропускания. Визуально на- [c.89]

    Описанный способ вычисления удобен в случае одноцветных индикаторов, изменяющих окраску от бесцветной до окрашенной. У двухцветных индика- А, торов (окрашенными являются и ион, и молекула) существуют две области поглощения света — в кис- Д лой и щелочной зонах. Если максимумы поглощения находятся далеко друг от друга (рис. XIII. 11,а), то степень диссоциации находят по одному из них. [c.177]

    Поглощение света веществом характеризуют кривой поглощения. Если кривая поглощения построена в координатах поглощение (е)—длина волны (X,), то положение ее максимума на оси абсцисс ( мак ) характеризует цвет и является мерой энергии электронного перехода (энергии возбуждения). На оси ординат точка Емано Характеризует интенсивность окраски и является мерой вероятности электронного перехода при поглощении квантов излучения с длиной волиы Хм акс (рис. 104). [c.219]

    Теорией Ми и его последователей объясняется также характер рассеяния и поглощения света проводящими частицами и частицами специфически поглощающими свет за счет собственной окраски вещества дисперсной фазы. В этом случае уменьшение светового потока при прохождении света через дисперсную систему обусловлено двумя явлениями вышерассмотренным кажущимся поглощением за счет рассеяния света и истинным погло-щеиием света частицами с превращением энергии световой волны в тепловую энергию. При этом для проводящих частиц на кривых зависимости поглощения света от длины волны возникают максимумы, положение которых определяется и размером частиц. [c.167]

    Зависимость интенсивности поглощения света образцом вещества от длины волны называется спе1Стром поглощения вещества. Видимый спектр поглощения прозрачных образцов, например раствора транс-[Со(ЫНз)4С12], можно изучить при помощи показанной на рис. 23.19 установки. На рис. 23.20 приведен спектр поглощения комплекса Т (Н20)й , о котором речь пойдет в следующем разделе. Максимум интенсивности [c.389]

    Обратите внимание на то, что для образования одного моля сахара СбН120б должно быть поглощено и использовано 48 молей фотонов. Необходимая для этого энергия излучения поступает из видимой части солнечного спектра (см. рис. 5.3 ч. 1). Фотоны поглощаются фотосинтетическими пигментами в листьях растений. К важнейшим из этих пигментов относятся хлорофиллы структура наиболее распространенного хлорофилла, так называемого хлорофилла-а , показана на рис. 25.1. Хлорофилл представляет собой координационное соединение. Он содержит ион связанный с четырьмя атомами азота, которые расположены вокруг него по вершинам квадрата в одной плоскости с металлом. Атомы азота входят в состав порфиринового цикла (см. разд. 23.2). Следует обратить внимание на то, что в окружающем ион металла цикле имеется ряд двойных связей, чередующихся с простыми связями. Благодаря такой системе чередующихся, или сопряженных, двойных связей хлорофилл способен сильно поглощать видимый свет. На рис. 25.2 показано соотношение между спектром поглощения хлорофилла и спектральным распределением солнечной энергии у поверхности Земли. Зеленый цвет хлорофилла обусловлен тем, что он поглощает красный свет (максимум поглощения при 655 нм) и синий свет (максимум поглоще- [c.442]

    Теоретическое пояснение. Спектрофотометрический анализ индивидуального компонента производят одним из способов, применяющихся в фтоколориметрии (см. пояснение к работе 36). Разница заключается лишь в том, что спектрофотометрическое определение осуществляют при длине волны, соответствующей максимуму поглощения света. Например, при определениях по молярному коэффициенту светопоглощения измеряют сначала несколько раз оптическую плотность раствора известной концентрации при длине волны Ямакс, а затем рассчитывают ех по формуле [c.141]

    За протеканием реакции следят по поглощению света с длиной волны, соответствующей обычно максимуму поглощения радикала, который является объектом изучения. С этой целью через раствор пропускают свет, который проходит через спектрографии на выбранной длине волны его интенсивность регистрируют фотоумножителем. Фототок поступает на осциллограф, на экране которого и фиксируется кинетика изменения оптической плотности. Данные обрабатывают, как правило, с использованием ПЭВМ, в результате чего получают кинетические характеристики процесса. Если частица расходуется по первому порядку, то вычисляется константа скорости реакции, если по второму, то вычисляется произведение е к, где ек -коэффициент экстинкции анализируемой частицы Я, который определяют в специальных опытах, что часто является сложной задачей. Существует ряд методов ее рещения. 1. Анализируют конечные продукты превращения радикалов после серии последовательных вспышек и по Их сумме определяют исходную концентрацию радикалов в каждом опыте. Для надежного определения ва необходим анализ всех продуктов и знание механизма их образования. 2. Радикалы генерируют в присутствии подходящего акцептора радикалов, который превращается в легко анадизируемый стабильный продукт. Например, радикалы КО- и КОз быстро реагируют с фенолами. В систему, где генерируются эти радикалы, вводится 2,4,6-три-тяреш-бутилфенол. Он быстро перехватывает все возникающие при вспышке радикалы, превращаясь в стабильный феноксильный радикал. Этот радикал имеет высокий коэффициент экстинкции, его легко определить спектрофотометрически. Если присутствие фенола не отражается на фотоинициировании, то вычислить коэффициент экстинкции исходных КО или КОз нетрудно. [c.203]

    Снятие спектра поглощения сульфосалицилата железа, выбор светофильтра и расчет молярного коэффициента светопоглощения. В мерную колбу вместимостью 100 мл помещают 5 mjt рабочего раствора железоаммонийных квасцов (раствор Б), 2 мл раствора сульфосалициловой кислоты, 25 мл аммиака и доводят раствор до метки дистиллированной водой. Хорошо перемешивают и наливают раствор в кювету фотоэлектроколориметра (/= 1 см) в качестве раствора сравнения берут воду. Измеряют оптическую плотность полученного раствора на светофильтрах, пропускающих свет в области 400-600 нм. Строят кривую светопоглощения в координатах оптическая плотность - длина волны и выбирают для дальнейшей работы светофильтр, соответствующий максимуму поглощения света окрашенным соединением [c.156]

    Вспышка длится несколько микросекунд. Кварцевый реакционный сосуд обычно имеет длину 10—20 см и диаметр 2—4 см. Метод применим как к газам, так и к жидкостям он позволяет наблюдать реакции с временем полупревращения до 10 с. Мощная вспышка позволяет получить высокую концентрацию активных частиц за их превращением следят спектрофотометрически по поглощению света на длине волны, соответствующей максимуму поглощения, Метод позволяет изучать рекомбинацию атомов и радикалов, их реакции с молекулами, реакции молекул в триплетном состоянии. [c.345]

    Для золей металлов все закономерности намного сложнее. Для них отмечается аномалия как в поглощении света, так и в рассеянии. При этом для таких золей характерно значительное поглощение света, что определяет интенсивность их окраски. Для обоих оптических эффектов наблюдаются максимумы, зависящие от длины волны и степени дисперсности золя. Соответственно изменяется и их окраска в белом свете. Так, золи золота с частицами приблизительно сферической формы радиусом 20 нм имеют максимум абсорбции при К = 530 нм, что отвечает абсорбции зеленых лучей. Соответственно они приобретают красную окраску. ЗЪли золота с радиусом 30 нм имеют максимум абсорбции при К — 600 нм. При этом золь приобретает синюю окраску. Приведенные данные находятся в достаточно хорошем согласии с теоретическими расчетами Ми. [c.397]

Таблица 17. Длины полн, соответствующие максимуму поглощения света катионами и гидратированиом Яг др и свободном Ягаз состоянии (для сравнения с ионизационными потенциалами приведена энергия, соответствующая длине волны, Таблица 17. <a href="/info/363583">Длины полн</a>, соответствующие максимуму поглощения света катионами и гидратированиом Яг др и свободном Ягаз состоянии (для сравнения с ионизационными потенциалами приведена энергия, <a href="/info/399342">соответствующая длине</a> волны,
    Для иона Т1 с одним -электроном основной терм расщен-ляется в октаэдрическом поле йа два подуровня и eg, причем электрон находится на более низком -уровне. Расстояние между уровнями зависит от силы поля. Возможен ли переход электрона между уровнями /2 и Ведь оба эти уровня -состояния, а правило Лапорта запрещает переход d d (см. 8). Но этот запрет строг для свободного атома, где электрон находится в центрально-симметричном поле. В поле, не имеющем центра симметрии (например, тетраэдрическом), запрет не строг, в октаэдрическом похге, имеющем центр симметрии, он тоже не строг, так как центральный ион колеблется в поле шести лигандов, времеино смещаясь от центра. В связи с этим поглощение света оказывается возможным и возникает спектр перехода Каким он должен быть Так как это переход, связанный с нарушением правила Лапорта, спектр не должен быть интенсивным. Поскольку это переход между близкими уровнями, он должен лежать в области сравнительно длинных волн, комплекс типа Т1 должен быть окрашен. Действительно, в водном растворе существует фиолетовый [Т1(Н20)б] , интенсивность окраски слабая, максимум полосы поглощения лежит при 20 300 см От- [c.245]

    Сложные органические молекулы обычно прямо не диссоциируют при поглощении света в области спектральных максимумов. Больщое число близкорасположенных электронных состояний, множество колебательных мод — все это приводит к увеличению вероятности безызлучательных переходов. Таким образом, какое-то одно возбужденное состояние, расположенное ниже предела диссоциации, может безызлучательно перейти в другое возбужденное состояние, лежащее выще предела диссоциации. Подобные процессы для малых молекул носят название предиссоциации, физические принципы которой объясняются в этом разделе. [c.51]

    Большинство аминокислот практически не поглощает свет в доступной для регистрации области, так что их приходится окра-тпвать нпнгидрином. Этот метод окраски будет подробно рассмотрен в приложении 2, посвященном аминокислотным анализаторам. Пептиды и белки поглощают свет в области 206—215 нм за счет пептидной связи и в широкой области спектра с максимумом вбли- и1 280 нм за счет присутствия в них ароматических аминокислот. Азотистые основания и нуклеиновые кислоты хорошо поглощают вблизи 260 нм. Поэтому не удивительно, что основной метод детектирования в хроматографии белков и нуклеиновых кислот — это регистрация поглощения света в ультрафиолетовой области спектра. Соответствующие приборы мы будем для краткости именовать УФ-детекторами. [c.82]

    Превращение одного продукта в другой при облучении эргостерина зависит от длины волны. Максимум поглощения света наблюдается при 265 нм (в гексане или эфире), что характерно для образования витамина Вг. Дальнейшее облучение приводит к образованию супрастерина и токсистерина, которые уже не обладают активностью витамина Вг и являются весьма токсичными. Чтобы предотвратить образование этих продуктов, необходимо тщательно контролировать процесс фотолиза и не допускать переоблучения. [c.391]


Смотреть страницы где упоминается термин Поглощение света максимумы: [c.47]    [c.88]    [c.27]    [c.136]    [c.445]    [c.293]    [c.391]    [c.202]    [c.59]    [c.253]    [c.245]    [c.130]    [c.131]   
Фотосинтез Том 2 (1953) -- [ c.66 , c.67 ]




ПОИСК







© 2025 chem21.info Реклама на сайте