Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронная дифракция в графит

    В. Ф. Киселев (1961 г.) получил надежные опытные доказательства и дал теоретическое обоснование строгого подчинения процесса хемосорбции закономерности стехиометрии. Совместно с сотрудниками им было установлено, что величины и теплоты сорбции на графите обусловлены количеством и характером межатомных связей, возникающих между атомами сорбата и атомами поверхности сорбента. Он отмечает, что хемосорбция на атомарно чистой поверхности приводит к насыщению разорванных на поверхности химических связей. Происходит восстановление нормальной гибридизации орбиталей поверхностных атомов благодаря их связи с хемосорбированными атомами. Исследование поверхности полупроводников со структурой алмаза, а именно монокристаллов германия и кремния методом дифракции медленных электронов, показало, что при сорбции на них кислорода, иода, брома, воды и атомов некоторых металлов действительно восстанавливается порядок в расположении атомов на поверхности, что и позволяет восстанавливать нормальную гибридизацию. [c.199]


    Строение молекулы бензола было установлено методом дифракции электронов в 1929 г. и в последующие годы. Это плоский шестиугольник, в котором длина связи углерод — углерод равна 140 пм (длина связи С—Н равна 106 пм). Это значение длины связи, имеющей на 50% характер двойной связи, вполне согласуется с величинами 154 пм для овязи С—С, 133 пм для связи С = С и 142 пм для связи, имеющей на 33 /з% характер двойной связи (графит). Плоская конфигурация молекулы находится в соответствии со свойствами двойной связи (разд. 6.5). [c.192]

    В последнее время все большее внимание при изучении углеродных материалов уделяется спектроскопии комбинационного рассеяния (КР-спектроскопия) [37—39]. На рис. 10 представлены типичные спектры КР для различных углеродных материалов. Природный графит характеризуется одной резкой полосой в спектре при 1580 см . Она соответствует дважды вырожденным деформационным колебаниям шестичленного кольца в Егя электронной конфигурации /)вл кристаллической симметрии. В случае не полностью упорядоченных переходных форм углерода (измельченный графит, пирографит, уголь, сажа) появляется вторая полоса при 1360 см Ч Она отвечает вибрационным состояниям разрушенной гексагональной решетки вблизи границы кристалла. Отношение интенсивностей этих полос характеризует поэтому степень кристалличности или усредненный диаметр микрокристалла, аналогичный тому, который рассчитывается из данных по дифракции рентгеновских,лучей. [c.33]

    Различное чередование слоев в монокристаллическом графите было обнаружено при наблюдении явления дифракции электронов. Этот факт использовался в качестве доказательства присутствия ромбоэдрической структуры в графите [61]. [c.28]

    В таблице приведены данные для молекул в парообразном состоянии, полученные в основном методом дифракции электронов и оптическими методами. Соединения расположены по суммарным формулам в порядке возрастания числа атомов углерода и водорода. Если известна форма молекулы, соответствующие сведения приводятся во второй графе в этой же графе в необходимых случаях [c.354]

    Существует предположение, что при сдвиге двух поверхностей в присутствии. масла с ноющей присадкой коллоидный графит десорбируется. Оно основано на том, что частицы графита физически адсорбируются на металлической поверхности. Такое мнение противоречит нашим взглядам на механизм граничной смазкп. Гудмэн [66], пользуясь методом электронной дифракции, убедительно доказал, что в этом отношении между пара- [c.88]


    Обнаружено , что основной максимум спектра энергетических потерь при дифракции электронов (в диапазоне 20-50 эВ) в напыленных углеродных пленках, полученных разными методами, лежит в области 23 эВ, что несколько ниже, чем для аморфного углерода и значительно ниже, чем для графита и алмаза (27 и 34 эВ соответственно). Автор считает, что положение этого максимума является характеристическим параметром структуры таких пленок. В некоторых образцах наблюдались слабые пики в диапазоне 7-33 эВ. Отмечено, что при отжиге и выдержке пленок происходит изменение их структуры (точнее спектра энергетических потерь). Для карбина, а точнее для сложной совокупности цепных, кольцевых, алмазных и других фрагментов, также обнаружен пик 23 эВ. Однако его рассматривали как ложный, обусловленный наличием примесного кислорода. Для всех изученных типов углерода (графит, плазменная сажа, карбин, алмаз) наблюдалась широкая полоса в районе 17 эВ. В спектре карбина присутствовали две подполосы (16 и 17 эВ), напоминающие аналогичные подполосы алмаза. [c.32]

    Структурные исследования, проведенные с помощью дифракций медленных электронов под малыми углами, позволили создать следующую картину роста. Первоначально растет слой совершенного монокристалла (рис. 56, а), затем его структура ухудшается и наряду с монокристаллическими участками растет поликристал-лический алмаз (см. рис. 56, б). На следующей стадии растет как алмаз, так и графит, причем алмаз сохраняет монокристальную структуру, что видно по линиям Кикучи, которые часто бывают двойными вследствие наследования двойниковой структуры кристалла-затравки. Далее растет поликристаллический алмаз совместно с графитом и наконец один графит (см. рис. 56, в). Ниже приведены результаты расчета и табличные значения межплоскостных расстояний на стадии, соответствующей рис. 56, а  [c.101]

    При низких температурах наблюдается физическая адсорбция водорода на углеродных материалах [143]. Молекулярное движение в монослое водорода, адсорбированного на угле и базисных плоскостях микрокристаллического и частично ориентированного графитов, исследовано в работе [144] методом нейтронной спектроскопии в интервале 40—140 К. При высокой температуре молекулярный водород находится преимущественно в. газоподобном состоянии. При низкой температуре водород переходит в локализованное состояние, в котором молекулы могут диффундировать вдоль поверхности. Структурированный характер адсорбционного состояния водорода на графите при низких температуре и давлении был подтвержден методом дифракции медленных электронов [145]. [c.61]

    Типы адсорбционных ппенок. Адсорбционные пленки принято делить на три основных типа мономолекулярные, полимолекулярные (многослойные) и конденсированные (жидкие). При низких температурах адсорбированные молекулы обычно прочно связаны с центром адсорбции. Эти процессы детально исследованы для пластинчатых кристаллов типа графита, BN, alj и Т.Д., на которых легко получить однородные поверхности. При этом часто образуется двумерная пленка, строение которой определяется структурой кристалла-подложки. Примером таких процессов (называемых двумерной конденсацией) может служить адсорбция ксенона Хе на графите, экспериментальные характеристики которой приведены на рис. 4.3, а. Наблюдаемый фазовый переход аналогичен обычным фазовым переходам газ — твердое тело и отличается от них лишь только тем, что при малой степени заполнения поверхности адсорбированные молекулы достаточно прочно связаны с адсорбентом и не переходят в газообразное состояние. Количество адсорбированного ксенона определяли методом оже-спектроскопии и одновременно структуру пленки изучали методом дифракции медленных электронов. На рис. 4.3, б представлены данные по адсорбции криптона на поверхности измельченного КС1 ( уд = 1 м /г).  [c.77]


Смотреть страницы где упоминается термин Электронная дифракция в графит: [c.59]    [c.235]    [c.354]    [c.243]    [c.122]   
Графит и его кристаллические соединения (1965) -- [ c.12 ]




ПОИСК





Смотрите так же термины и статьи:

Графит

Графит графита

Графой

Графы

Дифракция

Дифракция электронов

Электронная дифракция



© 2025 chem21.info Реклама на сайте