Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция водорода при низких температурах

    Ввиду того, что равновесие в системе графит - водород сильно зависит от температуры, причем с повышением температуры количество метана уменьшается и при 1000 °С близко к нулю, возможен перенос углерода из мест с более низкой температурой в места с более высокой температурой (где углерод может осаждаться). При взаимодействии с диоксидом углерода направление переноса массы углерода имеет обратное направление - от более горячих мест к менее горячим. Водород не образует с графитом слоистых соединений. Хемосорбция водорода происходит по активным местам, на что указывает полное прекращение хемосорбции водорода после адсорбции кислорода на поверхности графита при температуре жидкого азота. При повышенных температурах водород реагирует с адсорбированным на графите кислородом, что является эффективным способом удаления поверхностных оксидов с графита, т.е. методом очистки его поверхности. [c.127]


    Чаще всего для очистки водорода от азота, а также от кислорода, аргона и окиси углерода используют адсорбционные методы. При низких температурах адсорбенты имеют высокую поглотительную способность по отношению к этим примесям. Обычно адсорбцию ведут при температуре примерно 80 °К (охлаждение жидким азотом). В качестве адсорбентов используют активированный уголь или силикагель [5, 24]. [c.57]

    Итак, уголь при низких температурах адсорбирует кислород физически, и процесс этот сходен с ожижением газа, тогда как при высоких температурах имеет место химическое взаимодействие. Хорошо известно, что ожижение газа происходит практически мгновенно (если оно имеет место в условиях не очень низких давлений и если теплота конденсации mohi t достаточно быстро рассеиваться). Эта высокая скорость характерна для данного явления почти вне зависимости от температуры. Не удивительно, что таким же свойством отличается и физическая адсорбция. В отличие от физической адсорбции, скорость химических реакций в высокой степени зависит от температуры, падая при очень низких температурах до величин, не поддающихся измерению. Если графически выразить зависимость от температуры количества водорода, адсорбированного окисью цинка, то получится кривая, изображенная на рис. 5. В сравнительно узком температурном интервале имеет место значительное повышение адсорбции. Что ниже этой температуры адсорбция имеет физический характер, видно из того, что адсорбированный газ может быть удален эвакуированием. Заключение это подкрепляется и низкой величиной теплоты адсорбции, приблизительно в 1900 кал на моль при 0°С. С другой стороны, водород, адсорбированный при высокой температуре, может быть удален только в виде воды, и его теплота адсорбции равна 20 ООО кал (между 300 и 444° С). Наконец, скорость адсорбции при высоких температурах изменяется с температурой очень сильно, проявляя в этом отношении свойства химической реакции. В области температур между 250—450° К, где общая величина адсорбции растет (см. кривую рис. 5), скорость адсорбции изменяется мало. Напротив, при низких температурах скорость [c.89]

    Далее, очевидно, что исследование теплот адсорбции при низких температурах является очень важным, В этом отношении следует отметить получение теплот адсорбции из изотерм адсорбции гелия при низких температурах (Кеезом и другие исследователи [70]). Эти измерения проводились до 1,2° К на стёклах, угле и, что особенно интересно, на неоне, водороде, азоте, кислороде, полученных в твёрдом состоянии. Для последних адсорбентов теплоты адсорбции, полученные из изотерм, оказались порядка сотен калорий на моль. [c.119]


    Физическая адсорбция протекает достаточно легко, поэтому равновесное состояние устанавливается быстро даже при низких температурах. Хемосорбция связана с энергией активации (табл. 53), и скорость процесса незначительна, но возрастает с повышением температуры равновесное состояние также устанавливается медленно. Влияние температуры на количество адсорбированного вещества показано на рис. УП-1 для типичного случая адсорбции водорода на смешанном катализаторе . [c.205]

    В области низких температур при контакте водорода с металлами происходит его адсорбция на поверхности последних. Изучение адсорбции водорода на конденсированных слоях никеля, хрома, железа и платины при температурах от О до —195 °С показало, что она складывается из необратимого и обратимого процессов, соотношение которых зависит от температуры с повышением температуры доля обратимо адсорбированных молекул N06. увеличивается, а необратимо адсорбированных Л н уменьшается [29]. [c.19]

    В литературе имеется указание, что при очень низких температурах водород может физически адсорбироваться на поверхности чистых металлов с теплотой адсорбции, близкой к упомянутой выше теплоте физической адсорбции на угле, равной [c.75]

    Атомарный водород слабо адсорбируется на поверхности-льда и парафинов. При очень низких температурах некоторая заметная адсорбция на этих поверхностях все же имеет место. В этих условиях протекает реакция рекомбинации [c.82]

    В отличие от водорода, который хемосорбируется на угле при очень низких температурах, кислород до сравнительно высоких температур остается на нем в физически адсорбированном состоянии. Величина энтропии адсорбции кислорода при температуре жидкого воздуха указывает на то, что при этих условиях адсорбированные молекулы обладают полной свободой для поступательного и вращательного движения на поверхности [39в]. [c.83]

    Следует подчеркнуть, что явления физической и химической адсорбции четко различаются лишь в крайних случаях. Обычно осуществляются промежуточные варианты, когда основная масса адсорбированного вещества связывается сравнительно слабо (физическая адсорбция) и лишь небольшая часть связана прочно и может быть удалена длительным прогреванием и вакуумированием (химическая адсорбция). Например, кислород на металлах или водород на никеле адсорбируются при низких температурах по законам физической адсорбции, но при повышении температуры начинает протекать адсорбция с заметной энергией активации. В определенном интервале повышения температур прирост химической адсорбции перекрывает падение физической адсорбции, и на кривой температурной зависимости адсорбции возникает промежуточный максимум (рис. 91). [c.269]

    Обычно имею место промежуточные случаи, когда основная масса адсорбированного вещества связана с адсорбентом сравнительно слабо, а следы его связаны прочно и могут быть удалены лишь путем длительного прогревания и откачивания. Водород на никеле при низких температурах адсорбируется физически ввиду малой скорости химической реакции, но при повышении температуры начинает протекать адсорбция с заметной энергией активации по типу химических реакций. [c.41]

    При этом процессе, разработанном фирмой Лурги (ФРГ), удаление двуокиси углерода, сероводорода, органических сернистых соединений, цианистого водорода, бензола и смолообразующих углеводородов из синтез-газов осуществляется методом физической адсорбции метанолом при сравнительно низкой температуре. Процесс основывается на том, что перечисленные примеси, особенно двуокись углерода и сероводород, весьма хорошо [c.367]

    В более поздних работах описаны случаи неактивированной хемосорбции. Например, иногда хемосорбция на чистых металлических проволоках и сконденсированных пленках протекает быстро даже при низких температурах. Такое первое исследование быстрой хемосорбции на металлических нитях накала, которые очищали путем накаливания при пропускании электрического тока, было проведено Робертсом [4]. Он нашел, что водород поглощается быстро вольфрамовой нитью накала как при комнатной температуре, так и при температуре жидкого воздуха с образованием насыщенного слоя уже при очень низких давлениях (10 мм рт. ст.). Изменение теплот адсорбции от 34 ккал-моль при малых заполнениях до 17 ккал-моль при высоких заполнениях может в данном случае служить надежным подтверждением протекания хемосорбции. Аналогичные результаты получены для кислорода, начальная теплота адсорбции которого составляла 110 ккал-моль" . Для обоих газов насыщение соответствовало отношению — один атом водорода (или кислорода) на один атом вольфрама поверхности. [c.287]

    В настоящее время исследования хемосорбции обычно проводятся на сконденсированных пленках, так как их поверхность настолько велика, что адсорбцию можно измерять с большой степенью точности. К тому л<е при изучении хемосорбции металлов с низкой температурой плавления можно использовать пленки, а не нити накала. В результате этих исследований было установлено, что хемосорбция таких газов, как водород, азот, окись и двуокись углерода и этилена, быстро протекает на многих металлах (но не на всех). Например, хемосорбция водорода на марганце и окиси углерода на алюминии при комнатной температуре протекает медленно, а при взаимодействии окиси углерода (или этилена) с цинком [67] при комнатной температуре хемосорбция не была обнаружена. [c.287]


    Промышленный синтез метанола из оксидов углерода и водорода при низких температурах (200—300 °С) может быть проведен при разных давлениях. Естественно, при изменении давления меняются и физико-химические свойства реагируюш,их компонентов (плотность, вязкость, скорость диффузии, способность к адсорбции и т. п.). И хотя общие закономерности процесса образования метанола сохраняются, влияние отдельных технологических факторов на его выход (производительность катализатора), содержание и состав примесей будет различен, С повышением давления при прочих равных условиях увеличивается также равновесное содержание метанола в газе. [c.83]

    Адсорбцию на дисперсной платине изучали в разных условиях, Полторак и Воронин [89] адсорбировали водород при 77 К и 1 —100 Па ( 10 2— 1 мм рт. ст.) на катализаторах Р1/5102. Однако при такой низкой температуре собственная адсорбция [c.322]

    Процесс глубокой очистки поверхности металлического образца термообработкой и (или) ионной бомбардировкой неизбежно сопровождается удалением некоторого количества металла, который осаждается в вакуумной камере. Даже если его количество мало, это может заметно влиять на исследование адсорбции (и катализа). Например, очень тонкая металлическая пленка (10- г/м ) состоит из отдельных и редко расположенных весьма мелких кристаллитов, однако в пределах заданной удельной поверхности подложки общая поверхность металлической пленки вполне может быть равна поверхности, на которой осаждены кристаллиты. Чтобы воспрепятствовать адсорбции (или каталитической реакции), можно поддерживать достаточно низкую температуру металла. Поскольку адсорбция многих газов, таких, как кислород, водород или окись углерода, на переходных металлах идет с высокой скоростью даже при 77 К, использование указанного способа для подавления нежелательной адсорбционной активности весьма ограниченно чаще его применяют при каталитических исследованиях, так как не многие каталитические реакции быстро протекают при 77 К. Если подавить нежелательную активность за счет разной температуры невозможно, очищенный образец металла необходимо изолировать от металла, осажденного в процессе очистки. С этой целью необходимо перенести через запираемое отверстие в другую часть вакуумной установки или очищенный образец, или осажденный металл. Выбор определяется характером исследуемой реакции и типом металлического образца. Поэтому, [c.344]

    Во время хемосорбции [9] в молекуле адсорбата происходит значительное изменение распределения электронов. Молекула может удерживаться на поверхности ковалентными или ионными связями или даже диссоциировать на атомы или радикалы, связанные с поверхностью аналогичными связями [10, 11]. Обычно выделяющаяся при этом теплота велика, в особенности на начальных стадиях адсорбции, однако она может в значительной степени уменьшаться по мере заполнения поверхности адсорбатом (рис. 34 и 40). Скорости хемосорбции и десорбции из хемосорбированного слоя очень сильно меняются от системы к системе. В некоторых случаях хемосорбция происходит исключительно быстро, даже когда молекула расщепляется на атомы, как, например, у кислорода, азота или водорода на вольфраме. В других случаях хемосорбция представляет собой медленный процесс и имеет энергию активации, подобную энергии активации химической реакции, и поэтому ее скорость возрастает с повышением температуры. На основании того, что теплоты хемосорбции сравнимы с теплотами химических реакций, следует, что скорости десорбции из хемосорбированных слоев часто очень малы и хемосорбция многих газов, особенно при низких температурах, необратима с химической точки зрения. [c.157]

    Практическим результатом этого соотношения является то, что физически адсорбированные слои начинают удаляться при очень низких температурах, а для десорбции хемосорбированных слоев требуется нагревание до высокой температуры. Изменение теплоты адсорбции с заполнением при данной температуре оказывает сильное влияние на скорость десорбции при различных заполнениях. Например, теплота адсорбции водорода на вольфраме падает приблизительно с 40 ккал при малых заполнениях до 10 ккал при больших степенях заполнения. Это значит, что при комнатной температуре молекулы, адсорбированные на последних стадиях заполнения поверхности, испаряются в 10 раз быстрее, чем первые молекулы, попавшие в адсорбированный слой соответствующие продолжительности пребывания на поверхности — 1 сек и 10 лет. [c.233]

    Д. Дауден рассматривает случаи, ведущие к образованию различных форм адсорбционной связи. Прочная химическая адсорбция может быть обусловлена наличием остаточных валентностей вследствие неполного заполнения связывающих 5р-орбит у поверхности металла и атомных -орбит [187]. Поэтому увеличение числа -вакансий в металле должно вести к повышению прочности адсорбционной связи. Образование более прочных хр-связей при адсорбции требует значительной энергии возбуждения электронов, что может достигаться при достаточно высоких-температурах. Поэтому у металлов, не имеющих -вакансий ( р-металлов), адсорбционные связи, за некоторыми исключениями, оказываются слабыми [194]. Быстрая химическая адсорбция при низких температурах обусловлена наличием -вакансий в металле [186, 194]. Отмечается [186] различие адсорбционных свойств -металлов (обладающих -вакансиями) и 5р-металлов кислород химически адсорбируется всеми металлами, но водород, азот и насыщенные углеводороды—только- -металлами (с небольшими исключениями) окись углерода и ненасыщенные углеводороды прочно адсорбируются всеми -металлами. [c.58]

    Очень часто для одного и того же вещества в различных температурных интервалах можно наблюдать оба типа адсорбции. При низких температурах наблюдается процесс физической адсорбции, при высоких температурах — активированной адсорбции. Оба эти процесса обычно бывают разделены промежуточной областью, которая характеризуется ростом количества адсорбированного вещества с повышением температуры. Так, кислород адсорбируется платиной при 20 °С в количестве, приблизительно в десять раз большем, чем при —185°С. Адсорбция водорода на меди падает в интервале температур 70 -г- 100 К, затем с повышением температуры растет, достигает максимума при 450 К, после чего снова падает. На рис. 68 показана адсорбция водорода на марганец — хромокисных катализаторах. [c.398]

    Томас [135] также наблюдал активированную адсорбцию водорода при температуре выше 450. При низких температурах, например —183°, была обнаружена некоторая неактивированная адсорбция. Высокотемпературная адсорбция возрастает после удаления поверхностных окислов обработкой окисью углерода при 500°. На каждый удаленный поверхностный атом кислорода приходилось два связанных атома водорода. Быстрая хемосорбция водорода при комнатной температуре на графитовой пыли, полученной в вакууме, была отмечена Сейведжем [136] и Сейведжем и Броуном [137]. [c.225]

    Очень часто для одного и того же вещества, но в различных интервалах температур можно наблюдать оба типа адсорбции. При низких температурах наблюдается физическая адсорбция, при высоких температурах — активированная. Оба эти процесса обычно разделены промежуточной областью, которая характеризуется увеличением количества адсорбированного вещества с повышением температуры. Так, платина при 20°С адсорбирует приблизительно в 10 раз больше кислорода, чем при — 175 °С. Адсорбция водорода на меди понижается при температурах от 70 до 100 °К, а затем с повышением температуры растет и достигает максимума при 450°К, после чего снова падает. На рис. ХИ, 10 показана адсорбция водорода на марганец-хромокисны х катализаторах. Энергии активации, измеренные в области активированной адсорбции. [c.291]

    Нитрилы также могут быть прогидрировапы в амины и одновременно в соединения, содержащие метиленовую группу. Эта реакция часто используется при получении некоторых полимеров и полупродуктов агрохимии. Она сильно экзотермичиа, и при ее проведении следует тщательно регулировать температуру. Серьезную проблему представляет деамипироваиие, но его удается избежать или свести к минимуму введением в реакционную смесь безводного аммиака. В результате деаминирования могут образоваться полимеры, адсорбция которых на катализаторе дезактивирует его. Среди наиболее часто используемых в этой реакции катализаторов прежде всего следует назвать кобальт, нанесенный на кизельгур или оксид алюминия, затем, вероятно, рутений, нанесенный на оксид алюминия или активированный уголь. Условия реакции обычно сравнительно мягкие парциальное давление водорода 500—525 фунт/дюйм и относительно низкая температура (100—200°С), причем нижний предел предпочтителен. Используются следующие условия  [c.120]

    В отличие от других газов водород, по-нидимому, хемосорбируется на угле ужепри весьма низких температурах. Физическая адсорбция водорода на угле возможна лишь при чрезвычайно низких температурах порядка 20° К (39в, 41в]. В этом случае теплота адсорбции очень мала и равна приблизительно [c.74]

    Оба описанных типа адсорбционных процессов оказывают отравляющее действие на обмен водорода и дейтерия иа железных катализаторах ири очень низких температурах (—196° С). Мабл.одаемые в этом случае зависимости имеют тот же характер, что и ири адсорбции водорода на угле. При столь низких температурах, по-видимому, происходит хемосорбция того типа, которьгй сопровождается значительно более низкими теилотами адсорбции и десорбции, чем хемосорбционные процессы, преобладающие при более высоких температурах [123]. Хотя окончательно это решить нельзя, можно предположить, что низкотемпературная хемосорбция относится к диссоциативному типу, поскольку в этих условиях происходит обмен водорода с дейтерием. Так или иначе связь между двумя атомами водорода должна быть сильно ослаблена. Можно считать, что при температуре жидкого воздуха в хемосорбционных процессах участвуют иные электроны металла, че.м при более высоких те.мпературах, когда связи, по-видимому, образуются за счет /-электронов. [c.78]

    При комнатной и более высоких температурах молекулы, связанные с поверхностью вандерваальсовыми силами, постепенно становятся хемосорбированными [51]. Эта особенность кислорода отчетливо обнаруживается в его способности катализировать (благодаря парамагнитным свойствам) реакцию орто-пара превращения водорода. Будучи адсорбированным на угле при низких температурах, кислород ускоряет эту реакцию, но если адсорбция происходит при более высоких температурах, то он оказывает отравляющее действие [132, 133], Следовательно, для протекания реакции кислорода с поверхностью угля требуется энергия активации. В случае адсорбции на металлах энергия активации может быть ничтожно малой или даже равна нулю. Па поверхности цезия при температуре жидкого воздуха кислород самопроизвольно образует хемосорбционный слой молекул поверхностного окисла. Вполне возможно, что этот хемосорбционный процесс не имеет диссоциативного характера (см. далее настоящий раздел). На пленке молибдена, полученной испарением металла в высоком вакууме, переход от физической адсорбции к хемосорбции требует более высоких температур. Этот переход может быть обнаружен по уменьшению электропроводности пленки в результате хемосорбции кислорода [78]. Аналогичная картина наблюдается при адсорбции кислорода на никеле и платине [53]. [c.83]

    Теплота атомизации и энергия разрыва когезионных связей самая низкая у никеля и палладия (табл. 10). Под воздействием теплоты адсорбции водорода или теплоты реакции эти катализаторы формируются быстрее других и диспергируются также легко. В водных растворах кислот максимальная адсорбция непредельных соединений наблюдается в области потенциала 0,15—0,25 В (от обратимого водородного в данной среде). Из металлов п.патиновой группы самая слабая адсорбция (почти на порядок меньше) наблюдается на Рс1 (табл. 10). Хемосорбцпя при отрицательных по- енциалах очень часто сопровождается распадом (гидрогенолизом) органических соединений и их изомеризацией. Можно подобрать условия, когда эти реакции даже при комнатной температуре становятся решающими. В связи с этим необходимо проводить анализ не только содержимого в растворе, но и в газовой фазе. [c.207]

    В качестве промышленного способа извлечения гелия применяется способ фракционированной конденсации сопутствуюш,их гелию газов при постепенном охлаждении газа до весьма низких температур. Наиболее низкую критическую температуру после гелия имеет водород 1 (iкpит = —239,9° С). Получение таких низких температур в промышленных установках связано с большими материальными затратами, поэтому очистку гелия от водорода проводят не методом конденсации водорода, а химическими методами или адсорбцией на активированном угле. Следующей наиболее трудно сжижаемой примесью гелия является азот. При давлении 150 кПсм и охлаждении жидким азотом, кипящим под вакуумом, до температур —200, —203° С можно получить технически чистый гелий, содержащий [c.179]

    Вследствие высокого парциального давления водорода в системе образующийся алкен не сохраняется, а подвергается дальнейшему гидрированию. Такое насьпцение предотвращает повторную адсорбцию алкенов и, следовательно, подавляет образование отложений, благодаря чему активность крекирующей функции катализатора сохраняется на близком к максимальному уровне при более низких температурах и на протяжении более длительного периода, чем при обычном каталитическом крекинге. Низкомолекулярные алканы изостроения образуются в избытке по сравнению с равновесной концентрацией, что легко объяснимо на основании рассмотренного выше механизма. [c.191]

    Выше мы касались вопроса о физической или химической природе сил, определяющих адсорбцию (ср. теории Лангмюра и Поляни). Следует отметить, что это различие далеко не всегда может быть четко проведено. В крайних случаях физическая адсорбция, определяемая лишь Ван-дер-Ваальсовыми силами, характеризуется хорошей обратимостью, отсутствием стехиометрических соотношений, уменьшением адсорбции при повышении температуры, близостью тепловых эффектов адсорбции к теплотам сжижения или испарения такова адсорбция инертных газов или гексана на угле. В других крайних случаях химическая адсорбция осуществляется только путем химического взаимодействия, например, между кислородом и вольфрамом или кислородом и серебром при повышенных температурах здесь адсорбция почти необратима, тепловой эффект близок к энергии образования химических соединений (около 100 ккалЫоль и выше) и др. Обычно осуществляются промежуточные варианты, когда основная масса адсорбированного вещества связывается сравнительно слабо, а следы его связаны прочно и могут быть удалены лишь путем длительного прогревания и откачивания. Кислород на металлах или водород на никеле адсорбируется при низких температурах физически, ввиду малой скорости химической реакции при этих температурах, но при повышении температуры начинает протекать адсорбция с заметной энергией активации (активированная адсорбция) по типу химических реакций. В определенном интервале повышения температур прирост химической адсорбции (или хемосорбции) перекрывает падение физической адсорбции и на кривой температурной зависимости адсорбции возникает промежуточный максимум (рис. 41), характерный для наличия активированной адсорбции. [c.97]

    Гелий - инертный газ с уникальными свойствами. Плотность гелия ио отношению к воздуху составляет 0,138. Гелий почти не растворим в жидкостях и меньше, чем любой другой газ, склонен к адсорбции хорошо диффундирует через твердые тела и любые узкие щели. Гелий - хороший проводник теплоты, теплопроводность его в б раз выше, чем у воздуха, но несколько ниже, чем у водорода. По электропроводности гелию нет равных среди газов. Он слабо диамагнитен, с низкой скоростью ионизации, является самым прочным атомным п молекулярным веществом. Гелий имеет самую низкую температуру сжижения (0,71 - 4,16 К) и критическую температуру (5,2 К). Поверхностное натяжение жидкого гелия в десятки и сотни раз меньше, чем у других сжиженных газов. Ниже температуры 2,2 К происходит скачкообразное изменение свойств жидкого гелия, при этом ои становится сверхтекучим и обладает сверхтеплопроводиостью. [c.189]

    С другой стороны, энергетические уровни колебания центра масс и вращения адсорбированной молекулы с более тяжелым изотопом лежат ниже и ближе друг к другу, чем для адсорбированной молекулы с более легким изотопом. По этой причине содержащие В молекулы должны адсорбироваться сильнее своих более легких аналогов, содержащих Н (квантовостатистический изотопный эффект) [13, 21, 38, 45, 50—55]. Однако квантовостатистический изотопный эффект быстро убывает с ростом массы и момента инерции молекулы, а также температуры опыта. Он имеет существенное значение только для наиболее легких молекул при низких температурах. В случае адсорбции изотопных молекул водорода квантовостатистический эффект является основным [13, 21, 50—53]. [c.354]

    Ю. п. Благой, Б. Н. Зимогляд, Г. Г. Жунь (Физико-технический институт низких температур АН УССР, Харьков). В объемных фазах эффекты, обусловленные различиями свойств орто-пара-модификаций изотопов водорода (за исключением некоторых известных тепловых, магнитных и оптических явлений), даже при весьма низких температурах малы и ими можно пренебречь. Однако было показано [1—9], что при низкотемпературной адсорбции на поверхности некоторых твердых тел происходит разделение водорода и его изотопов на орто-пара-модификации. [c.62]

    Отличие высокотемпературных катализаторов гидрогениза-ции (МоЗз, ШЗг) от низкотемпературных металлических катализаторов (Рс1, Р1, N5) эти авторы видят также еще и в том, что при повышении температуры концентрация водорода на поверхности высокотемпературных катализаторов мало изменяется вследствие меньшей величины теплоты адсорбции водорода, в то время как на поверхности металлических катализаторов с повышением температуры (выше 250—300°) при низких да-плениях концентрация водорода и углеводорода резко понижается и скорость реакции уменьшается. [c.95]

    Хемосорбция нередко протекает довольно медленно со скоростью, определяемой наличием некоторого активационного барьера. Фактически процесс хемосорбции может состоять из двух стадий сначала происходит физическая адсорбция газа, а затем он вступает в медленнук >> химическую реакцию с поверхностью твердого тела. При низких температурах скорость хемосорбции может быть так мала, что практически наблюдается лишь физическая адсорбция. При высоких же температурах физическая адсорбция почти незаметна (вследствие низкоГг энергии адсорбции) и имеет место лишь хемосорбция. В качестве примера рассмотрим адсорбцию водорода на никеле. Изобара этого процесса схематически изображена на рис. Х1У-2. Кривые 1 и 2 показывают соответственно нормальное уменьшение физической адсорбции и хемосорбции с ростом температуры. В переходной области, кривая хемосорбция протекает с заметной, хотя все еще небольшой скоростью. Поэтому в этой области расположение точек определяется временем, отведенным на установление равновесия. По существу, кривая 1 [c.437]

    Интерпретация теплот адсорбции в отношении связи метал—адсорбат определяется знанием стехиометрии хемосорбцин, которая в свою очередь зависит от условий процесса. При адсорбции на переходных металлах таких молекул, как водород, кислород, азот и насыщенные углеводороды, если температура достаточно высока, преобладает диссоциативная хемосорбция. Однако известно, что при низкой температуре и большом покрытии часть водорода и азота адсорбируется в слабосвязанной молекулярной форме. Кроме того, недиссоциативная хемосорбция важна в случае олефинов или ароматических углеводородов из-за взаимодействия их я-электронов с поверхностными атомами металла. [c.24]

    Вообще, по-видимому, оптимальные условия для разных систем следует подбирать опытным путем. Если вклад собственной адсорбции на носителе не слишком велик, измерение величины поверхности дисперсной платины по хемосорбции водорода предпочитают проводить при 273—300 К (и давлении до 200 Па, 1—2 мм рт. ст.), а не при 520 К и более высоком давлении, так как с высокой степенью надежности можно считать Хт = 2 и так как при низких температурах процесс перетекания водорода, несо.мненно, имеет меньшее значение [c.323]

    Дифференциальный анализ водорода. Данный метод, описанный Холлом и Лютинским [149], основан на зависимости реакционной способности водорода при его обмене с дейтерием от природы поверхности, на которой он находится. Пока этот способ использовался только для выявления форм водорода, связанного на металле и на окисле применительно к нанесенной платине, однако метод может оказаться полезным и для выявления различий в реакционной способности поверхности разных металлов при достаточно низкой температуре реакции. Этот метод использовался также для идентификации данных по программированной термодесорбции форм водорода, адсорбированного на дисперсной платине (платиновой черни) [150]. Программированная термодесорбция. Температура, необходимая для десорбции газа с металлической поверхности, зависит от энергии связи газа с поверхностью. Для чистых металлических образцов отдельные пики спектра термодесорбции часто прини-сывают разным типам поверхностных адсорбционных центров. Сводка таких данных приведена Хейуордом [151]. Авторы работы [152] изучали программированную термодесорбцию водорода с дисперсного платинового катализатора (платиновой черни) [152], а в обзоре [153] описана методика исследования таких образцов, предусматривающая десорбцию в поток газа-носителя. По-видимому, возможные изменения десорбционного спектра, полученного для разных газов, например окиси углерода, водорода или азота, могут дать сведения о поверхностном составе катализаторов на основе сплавов. Хотя чаще исследуют металлические образцы без носителя, в благоприятных условиях можно изучать и нанесенные металлы [33] при этом весьма полезно сочетать этот метод и ИК-спектроскопию. Изменения работы выхода. Изменение работы выхода как следствие адсорбции газа может дать сведения о составе поверхности, если известно, что эти изменения для двух чистых компонентов биметаллического катализатора значительно отличаются. Надежнее всего использовать метод для выяснения распределения компонентов сложной системы. Захтлер и сотр. [132, 135] применили фотоэлектрический метод для изучения адсорбции окиси углерода на различных металлических пленках, а Уоллей и др. [154] использовали диодный метод, исследуя адсорбцию окиси углерода на пленках Рс1—Ag. [c.444]


Смотреть страницы где упоминается термин Адсорбция водорода при низких температурах: [c.119]    [c.35]    [c.238]    [c.220]    [c.42]    [c.76]    [c.455]    [c.218]    [c.209]    [c.63]    [c.198]   
Смотреть главы в:

Высоковакуумные адсорбционные насосы -> Адсорбция водорода при низких температурах

Высоковакуумные адсорбционные насосы -> Адсорбция водорода при низких температурах




ПОИСК





Смотрите так же термины и статьи:

Адсорбция водорода

Адсорбция при низких температурах



© 2024 chem21.info Реклама на сайте