Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Прядильные расплавы поликапроамида

    Этот вариант способа формования волокна из ленты для получения поликапроамидного штапельного волокна в настоящее время также представляет лишь исторический интерес. При формовании волокна из поликапроамида, содержащего повышенное количество низкомолекулярных соединений, более целесообразно не вводить в технологический процесс стадию образования твердого полимера в виде ленты, а передавать расплав непосредственно на прядильную машину, используя подробно описанный выше способ полимеризации в трубе НП. [c.361]


    Второй способ сводится к введению в прядильный раствор или расплав небольших добавок, вызывающих сольватацию активных групп полимера и снижающих энергию межмолекулярного взаимодействия (например, в присутствии очень небольших количеств воды или капролактама вязкость расплава поликапроамида снижается в 5—10 раз). [c.62]

    В настоящее время разработан непрерывный процесс полимеризации гетероцепных полимеров и формования волокна. Расплав по обогреваемым трубам подают на прядильные машины. При этом необходимо учитывать очень большую вязкость прядильного расплава, особенно если в нем нет мономера или пластифицирующих добавок, и высокую температуру. Поэтому расплав транспортируют под давлением в присутствии стабилизаторов при максимально допустимой температуре и непрерывной эвакуации мономера (при транспортировке расплавленного поликапроамида). [c.126]

    Четод непрерывной полимеризации и формования волокна капрон применяется в производственных условиях при получении штапельного волокна и кордной нити. Этот же метод может быть использован и при получении текстильной нити, при формовании которой количество расплава, подаваемого в единицу времени на прядильную машину, значительно меньше. Однако при получении полиамидной текстильной нити в большинстве случаев пока используется описанный выше так называемый полунепрерывный метод (непрерывный процесс полимеризации мономера, дробления полимера, экстракции и сушки крошки и последующее плавление ее в экструдере). Так как время пребывания крошки в экструдере не превышает 5 мин, то и без демономеризации в фильеру поступает расплав поликапроамида, содержащий только 1,5—2% низкомолекулярных фракций. В этом случае промывка полученной текстильной нити также является излишней. [c.74]

    Принципиальная схема аппарата для обработки расплавленного поликапроамида паром (азотом) приведена на рис. 65. В корпусе 1 аппарата расположена труба (одна или несколько), внутри которой расплавленный поликапролактам распыливается паром (азотом). Обработанный поликапроамид выводится из аппарата при помощи шнека 3. К преимуществам технологической установки можно отнести простоту, надежность и эффективность действия, возможность изменения и регулирования производительности в широких пределах и автономность управления процессом, а также небольшие массу и габариты. При промышленной эксплуатации этих аппаратов было установлено, что они обеспечивают эффективное удаление НМС при производительности 200—750 кг/сут. так что конечное содержание НМС не превышает 3,5 0,2%.Однако из-за сравнительно высокого остаточного содержания влаги при обработке расплава водяным паром получаемый полимер нестабилен, что приводит к необходимости удалять НМС в непосредственной близости от прядильных машин или аппаратов для формования пластмасс. Имеются и аппараты других конструкций для удаления низкомолекулярных соединений из расплава при помощи инертного газа. В этих аппаратах для увеличения поверхности соприкосновения инертного газа и расплава используют различные способы. По данным патента [11], это достигается при помощи электрообогреваемого испарителя 2, который также обеспечивает к тому же образование тонкого слоя полимеризата (рис. 66). Аппарат снабжен дозирующим насосиком 1 и напорным насосиком 4. На корпусе аппарата расположены штуцера 5 и 7 для входа н выхода инертного газа. После удаления НМС расплав накапливается в болоте 6, откуда забирается напорным насосом 4 на формование через фильеру 5.  [c.155]


    В некоторых случаях оказалось целесообразным применять различную температуру в обогревающей рубашке прядильной головки и на плавильной решетке. Такой способ применяется преимущественно при формовании волокна из поликапроамида для обеспечения возможно более низкого содержания низкомолекулярных фракций в получаемом шелке. Как уже указывалось, после расплавления полиамидной крошки устанавливается соответствующее данной температуре равновесие между низко- и высокомолекулярными фракциями, если, например, время пребывания расплава в болоте достаточно для этого. Чтобы не допустить слишком высокого содержания низкомолекулярных фракций в шелке, рекомендуется проводить формование на нижнем пределе оптимальной для каждого полиамида температуры формования и в первую очередь следить за тем, чтобы расплав находился в болоте в течение возможно более короткого времени. Поэтому объем болота должен быть минимальным. Однако размеры и форма болота определяются необходимостью создать условия, при которых пузырьки, образующиеся при плавлении полиамида, могли бы подниматься вверх и не попадали бы в подаваемую прядильными насосиками массу расплава, а затем в элементарные волоконца. Можно еще раз сослаться на уже цитированную работу Роденахера [25], в которой указывается на возможность значительных различий во времени пребывания расплава в болоте при использовании системы подачи вязкой жидкости к зеркалу стекающего вниз высоковязкого расплава. Эти различия вызваны образованием так называемой мертвой зоны, которое имеет место в тех случаях, когда при определении формы емкости для расплава ( болота ) не придают должного значения режиму течения. Поэтому, как правило, необходимо возможно полнее высушивать полиамидную крошку (чтобы уменьшить образование пузырьков водяного пара после плавления крошки) и добиваться минимального содержания в ней низкомолекулярных фракций. Возможно более полное экстрагирование и тщательная сушка крошки являются при данном объеме болота предварительным 21 Л о 1334 [c.321]

    Однако содержание экстрагируемых низкомолекулярных соединений не должно быть и слишком низким оно должно составлять более 0,7%, так как в противном случае возникают затруднения при переработке крошки в волокно [19]. При формовании волокна из поликапроамида эти затруднения можно в известной степени устранить. Это достигается использованием паровой прядильной головки с переработкой в волокно влажной крошки после экстракции [19] или с помощью метода, предложенного. Людевигом [21], согласно которому через расплав полиамида, полученный обычным способом (плавлением на решетке) из влажной крошки, не подвергнутой экстракции, продувают сильный ток перегретого водяного пара. В этом случае происходит одновременно удаление влаги и мономерного лактама. Каждый из описанных способов имеет свои преимущества и недостатки и может быть использован в производственной практике. В настоящее время главным образом применяется метод формования волокна из высушенной крошки, поскольку технологический режим для этого процесса лучше разработан. [c.322]

    Благодаря простоте непрерывного метода полимеризации и формования волокна и возможности исключения при его осуществлении ряда технологических операций представляло большой интерес выяснить возможность его использования для получения дедеронового шелка исследования в этом направлении начались уже давно. Вначале существовало мнение, что при кручении и вытягивании могут встретиться непреодолимые затруднения, связанные с наличием в нити повышенных количеств низкомолекулярных соединений [50]. Однако, как было показано позднее, затруднения при формовании дедеронового шелка по непрерывной схеме не были связаны с повышенным содержанием в нем лактама и олигомеров. Основной предпосылкой для получения равномерного шелка (безразлично по какому способу) является необходимость переработки поликапроамида, достаточно равномерного по вязкости. Эта проблема была решена в результате создания конструкции трубы НП типа 2 (см. также стр. 150) с соответствующими приспособлениями [52]. Полученный равномерный расплав можно было непрерывно подводить к отдельным прядильным местам с помощью распределительных трубопроводов соответствующей конструкции [53]. Сфор- [c.351]

    Согласно экономическому патенту ГДР 7280 [53], эта проблема разрешается путем применения обогреваемого закольцованного трубопровода для распределения расплава по отдельным прядильным головкам. Насос — 5 на рис. 148а — подает вытекающий из трубы расплав в кольцевой трубопровод одновременно он играет роль напорного насосика. Часть этого расплава дозирующими насосиками присоединенных к расплавопроводу 24 или 48 прядильных головок подается к фильерам, а неисиользованная часть расплава через редукционный вентиль вновь подается во всасывающую линию насоса. Если в кольцевом трубопроводе поддерживается такая же температура, как и в трубе формы Ъ, то в расплаве поликапроамида сохраняется равновесие между низкомолекулярными и высокомолекулярными фракциями полимера вплоть до поступления расплава в дозирующий насосик. В насосном блоке расплав нагревают до температуры, наиболее пригодной для формования"волок-на. Так как время пребывания расплава в насосном блоке очень незначительно, равновесие заметно не смещается, и поэтому на формование поступает расплав полимера, равномерный по вязкости. [c.355]


    Демономернзация поликапроамида перегретым паром. При отгонке капролактама перегретым паром методом, разработанным Киевскими экспериментальными мастерскими совместно с Киевским комбинатом химических волокон, расплав подается к прядильному насосику через форсунку, в которой к вытекающим струйкам полимера подводится сухой перегретый пар при 300 °С. Пар увлекает с собой пары лактама и димера, а расплав подается насосиком через песочный фильтр в фильеру. Вязкость расплава полиамида в результате указанной обработки значительно повышается. [c.72]

    Причиной появления включений, а следовательно, и обрывов нитей может быть неоднородность поликапроамида, возникающая из-за неравномерного нагревания реакционной массы при полиамидировании. Кроме того, пристеночный слой расплава поликапроамида находится в аппаратах полиамидирования, плавильных устройствах и расплавопроводзх значительно дольше, чем основная масса, и может подвергаться термической деструкции. При сушке или плавлении вблизи обогреваемой поверхности (т. е. при более высокой температуре) возможно разложение полимера или образование полимера с сетчатой структурой (сшивание). Поскольку частицы такого полимера удалить не удается, они попадают в расплав, а затем и в нити. Поэтому загрязненные аппараты полиамидирования, расплавопроводы и прядильные головки следует выключать и тщательно чистить. Особенно опасно окисление полимера, которое может происходить на поверхности расплава из-за недостаточной очистки азота от кислорода или при сушке крошки это также приводит к неоднородности полимерной массы, а следовательно, и к обрывности нитей при вытягивании. [c.197]


Смотреть страницы где упоминается термин Прядильные расплавы поликапроамида: [c.360]    [c.355]   
Физико-химические основы технологии химических волокон (1972) -- [ c.115 , c.119 , c.150 ]




ПОИСК





Смотрите так же термины и статьи:

Поликапроамид



© 2025 chem21.info Реклама на сайте