Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиамиды плавление

    Температуру плавления кристаллических полимеров можно определить и по характеру изменения деформаций под влиянием внешней нагрузки при различных температурах. На рис. 22 приведены результаты определения аморфного полистирола и кристаллического полиэтилена и полиамида. Для подобных исследований можно также использовать термодинамические весы. В отличие от процесса плавления низкомолекуляр- [c.52]


    Присутствие алифатических заместителей в метиленовых звеньях диаминов и дикарбоновых кислот затрудняет кристаллизацию полимера и ориентацию его макромолекул. Плотность упаковки в полимере нарушается, при этом снижается температура плавления полимера и уменьшается его механическая прочность. Например, температура плавления полиамида, полученного из метиладипиновой кислоты [c.450]

    НИЮ водородных связей между отдельными макромолекулами. Температура плавления таких полиамидов, как правило, выше температуры термического разрушения полимера. [c.450]

    Оксиэтилированные полимеры растворимы в этиловом спирте и смеси спирта с водой по свойствам они приближаются к каучукам, сохраняя температуру плавления исходных полиамидов. [c.260]

    Бается смещенной друг относительно друга. Вследствие этого снижается прочность связи между цепями, что вызывает более легкую растворимость и более низкую температуру плавления у смешанных полиамидов, чем у полиамидов регулярного строения. Смешанные полиамиды растворяются в водных растворах метилового и этилового спиртов. Это преимущество позволяет использовать их для получения лаков. В СССР смешанный полиамид, получаемый сополиконденсацией капролактама и ади- [c.235]

    Например, степень кристалличности полиэтилена может достигать 80%. Наиболее выражена способность к образованию кристаллов у полиолефинов, полиамидов и полиэфиров. Кристаллическое строение имеет полимер карбин. Свойства кристаллических и аморфных полимеров существенно различаются. Так, аморфные полимеры характеризуются областью температур размягчения, т. е. областью постепенного перехода из твердого состояния в жидкое, а кристаллические полимеры — температурой плавления. [c.359]

    Преимуществом способа поликонденсации в растворе является возможность проведения реакции при более низкой температуре. Это особенно важно при синтезе термостойких полимеров с высокой температурой плавления (300—400°С). Поликондеисация в растворе проводится обычно при температуре 20—50 °С в присутствии катализаторов и, если необходимо, акцепторов выделяющегося простейшего вещества. При синтезе полиэфиров и полиамидов в этом случае используются не дикарбоновые кислоты, а их хлорангидриды. Большое значение при этом имеет подбор растворителя. [c.143]

    Температура плавления и другие свойства полиамидов зависят от числа метиленовых групп, разделяющих амидные связи. Полиамиды, полученные из диамидов и дикарбоновых кислот с четным числом атомов углерода, плавятся при более высокой температуре, чем изомерные им полимеры, полученные из мономеров с нечетным числом атомов углерода. Температуры плавления изомерных им полиамидов, полученных из смеси мономеров с четным и нечетным числом атомов углерода, занимают промежуточное положение (рис. 59). [c.382]


    Наряду с описанными способами получения расплава полиамидов плавлением крошки на плавильной решетке или полиамидной [c.368]

    По внешнему виду это роговидные продукты от белого до светло-кремового цвета. Полиамиды характеризуются высокой прочностью к ударным нагрузкам, эластичностью, низким коэффициентом трения и хорошей масло- и бензостойкостью. Температура плавления полиамидов зависит от природы исходных компонентов и находится в пределах 185—264 °С. Полиамиды не растворяются в обычных растворителях. Они растворяются лишь в таких сильнополярных растворителях, как концентрированные кислоты, фенолы, фторированные спирты, амиды. [c.84]

    Капролактам (лактам е-аминокапроновой кислоты, 2-оксо-гексаметиленимин) представляет бесцветное кристаллическое вещество с температурой плавления 68,8°С, темпе-/КН ратурой кипения 262,5°С и плотностью 1,02 т/м (при 70°С). Хорошо растворим в воде (525 г в 100 г воды), бензоле, ацетоне, этаноле, диэтиловым эфире, плохо растворим в алифатических углеводородах. Растворяется в разбавленной серной кислоте, гидролизуясь до е-аминокапроновой кислоты. Гигроскопичен. При нагревании с концентрированными минеральными кислотами капролактам образует соли. В присутствии каталитических количеств воды, спиртов, аминов и органических кислот при нагревании полимеризуется с образованием полиамида. [c.343]

    Синтез полиамидов с количеством атомов углерода между амидогруппами менее шести затрудняется вследствие циклизации мономеров. К тому же очень близкое расположение амидных групп в таком полимере настолько увеличивает силы межмолекулярного сцепления, что температура плавления полимера становится выше температуры его термического распада. [c.448]

    Однако для получения волокон народного потребления (капрон, анид, рильсан, энант и др.) формование из растворов не применяется. Это объясняется тем, что формование из расплава имеет явные преимущества по сравнению с формованием из растворов как по сухому, так и мокрому способу. При формовании из расплава не требуются растворители, а поэтому отпадар необходимость в их регенерации, обезвреживании воздушного и водного бассейнов и др. При применении расплавного метода допускаются более высокие скорости формования за счет более легких условий фазовых переходов и образования твердой нити. В (Случае получения полиамидных волокон специального назначения (термостойкие, высокомодульные и др.) формование из растворов оказывается единственно возможным методом, пригодным для промышленного применения. Это объясняется тем, что специальные волокна формуются из ароматических или циклоалифатических полиамидов, плавление (размягчение) которых наблюдается выше температуры их разложения. Формование из растворов осуществляется как мокрым, так и сухим методом. Мокрым методом формования из растворов получают такие волокна, как фенилон, сульфон-Т, вниивлон (СВМ) и др. [c.118]

    Лучшими условиями для плавления на участке червяка с коническим сердечником являются такие, при которых ширина твердой пробки остается примерно постоянной. Вполне допустимо также и умеренное увеличение ширины пробки. Результаты экспериментов по исследованию профиля пробки показаны на рис. 12,17—12,19, Как это следует из модели, во всех случаях ширина пробки в зоне питания (вплоть до 12 витка) непрерывно уменьшается изменение наклона происходит в начале участка червяка с коническим сердечником (зона сжатия) при этом для полиамида наблюдались случаи закупорки, для ПЭВД — устойчивая и постоянная ширина пробки, [c.446]

    С повышением степени замещения понижаются температура плавления и твердость полиамида, повышаются его эластичность, растворимость, гигроскопичность. [c.261]

    Введение ароматических ядер в основную цепь полимера всегда приводит к повыщению жесткости алифатической цепи и, как следствие, к повышению температуры плавления и понижению растворимости полимера. Это явление хорошо изучено на примере полиэфиров, и полиамидов, [c.328]

    Температура плавления полиамидов выше, чем полиэтилена, причем она повышается с увеличением числа амидных связей в макромолекуле. [c.382]

    Ниже показано влияние химического строения на температуру плавления полиамидов  [c.384]

    При замене метиленовых групп ароматическим кольцом температура плавления полиамида повыщается, при введении вместо метиленовой группы атома кислорода—понижается Ы- или С-алкилирование полиамида также понижает его температуру плавления, [c.384]

    В ряду полиамидов, содержащих наряду с алифатическими ароматические звенья, сохраняется известная для алифатических полиамидов зависимость температуры плавления и других свойств не только от числа метиленовых групп в алифатических звеньях, но и от четного или нечетного числа этих групп. [c.386]

    В результате поликонденсации образуется полиамид следующего строения [—ЫН—(СНг) —ЫН—СО—(СНа)1—СО—] . Температура плавления 252— 256 °С. [c.206]

    Полиамиды представляют собой твердые рогообразные непрозрачные вещества белого цвета с температурой плавления, лежащей для разных полиамидов в пределах 180—250°. [c.669]


    По свойствам полиуретаны имеют много общего с полиамидами. Линейным полиуретанам, как и полиамидам, свойственна нысокая прочность, обусловленная большим количеством водородных связей, возникающих между карбонильными и иминнымп группами соседних макромолекул. По мере увеличения длины углеводородных цепей, разделяющих полярные группы в макромолекулах полиуретана, уменьшается его жесткость и прочность и снижается температура плавления кристаллитов. Температуря плавления полиуретанов (и полиамидов) с нечетным числом метиленовых групп между полярными звеньями ниже температур плавления ближайших полимергомологов. содержащих четное число метиленовых групп в углеводородных цепочках (рис. 119). [c.456]

    В случае редкого расположения боковых цепей полиоксиэти-лена наблюдается лишь незначительное снижение температуры плавления полиамида, но эластичность и морозостойкость его существенно увеличиваются. [c.192]

    Полиэфиры жирных кислот, например себациновой, сравнительно легко 1 идролизующиеся при действии растворов кислот и щелочей, находят применение в качестве искусственных восков, которые, как и природные воски, обладают высокой кристалличностью, низкой температурой плавления и резким переходом ич гвердого в жидкое состояние (рис. 102). Эти оке полиэфиры применяют как пласти( )икаторы и исходные ке.цества в синтезах некоторых полиуретанов и полиамидов. [c.422]

    Наиболее удобно проводить реакцию поликонденсации при нагревании смеси реагирующих компонентов выше температуры их плавления (реакция в расплаве). Однако не все мономеры могут подвергаться действию высокой температуры без окислительной деструкцин и не во всех случаях температура плав.пения смеси соответствует благоприятным условиям равновесия полимер низкомолекулярная фракция. Для уменьшения окислительной деструкции рекомендуют проводить реакцию в атмосфере азота. Для регулирования температуры поликонденсации и предотвращения местных перегревов целесообразно вести процесс в растворе. При таком способе поликонденсации предотвращается и возможное , деструкции мономеров, так как при этом уменьшается вероятность протекания побочных процессов. Однако обычно применяемые аминокислоты и их соли растворимы лишь в малодоступных растворителях, поэтому проведение реакции в растворе удорожает производство полиамида. [c.443]

Рис. 111. Образование сферолитов при мед- Рис. 112. Зависимость тем-лопиом охлаждении полиамида (уислпчеиис в пературы плавления поли-,500 раз). амидов от количества амидо- Рис. 111. Образование сферолитов при мед- Рис. 112. Зависимость тем-лопиом охлаждении полиамида (уислпчеиис в пературы <a href="/info/375171">плавления поли</a>-,500 раз). амидов от количества амидо-
    Совместной поликонденсацией многоосновных карбоновых кислот с многоатомными спиртами или диаминами, а также совместной поликонденсацней различных оксикислот или аминокислот можно широко варьировать свойства гетероцепных полимерных сложных эфиров и полиамидов. В результате реакций совместной полиэтерификации или полиамидирования, в которых принимают участие различные дикарбоновые кислоты и различные диолы или диамины, изменяется концентрация полярных групп пли регулярность их расположения в макромолекулах полимера, что отражается на его физических и механических свойствах. С понижением концентрации полярных групп в макромолекулах уменьшается количество водородных связей между цепями и, следовательно, снижается температура плавления и твердость полимера, возрастает его упругость и растворимость. Нарушение регулярности чередования метиленовых (или фениленовых) и полярных групп. штрудняет процесс кристаллизации сополимера и снижает степень его кристалличности. Это придает сополимеру большую эластичность, по вызывает уменьшение прочности и теплостойкости изделий из данного полимерного материала. При поликонденсации ш-амино-капроновой кислоты с небольшим постепенно возрастаюш,им количеством АГ-соли (соль гексаметилендиамипа и адипиновой кислоты, или соль 6-6) температура размягчения сополимера плавно снижается. Если в макромолекулах сополимера количество звеньев соли 6-6 достигает 35—50%, температура плавления сополимера снижается до минимума (150° вместо 214—218° для полиами- [c.532]

    Если эти ответвления расположены редко, пе создается пятствий для кристаллизации отдельных сегментов макромолекул, и кристаллические образования имеют такие же размеры и форму, как и в гомополимерах полиамида. Поэтому температура плавления привитого сополимера мало отличается от температуры плавления соответствующего гомополиамида. Полиоксиэтиленовые боков1.1е ответвления выполняют функцию пластификатора, способствуя увеличению текучести расплава, повышению упругости полимера, придавая волокну большую гибкость и лучшую морозостойкость. Волокна и пленки из привитого полиамида сохраняют упругость и при —7Сг (полиамид 6 и полиамид 6-6 начинают утрачивать упругость при температуре н(i кoJ[ькo ниже О ). [c.543]

    Шестеренчатые насосы (см. рис. 10.32, в) широко применяют для перекачивания различных жидкостей. Использование течения, вызванного уменьшением объема нагнетательной камеры, позволяет точно дозировать расход шестеренчатых насосов при сохранении высокого давления на выходе — сочетание, необходимое при перекачивании низковязких масел. Гидравлические системы многих машин для литья под давлением включают в себя шестеренчатые насосы, хотя имеется тенденция замены их лопастными насосами. Шестеренчатые насосы также нашли свое применение при перекачивании и нагнетании полимерных расплавов, в частности низковязких. Поэтому их часто используют как бустерные насосы в сочетании с пластицирующим червячным экструдером для низковязких полимеров (например, полиамида) как для поддержания давления, так и для точного регулирования расхода (например, при изготовлении прядильного волокна). Шестеренчатые насосы как устройства с высокой производительностью применяются при грануляции полиолефинов, поступающих непосредственно из реактора. Комбинация из трех последовательно соединенных шестеренчатых насосов при питании их твердыми гранулами была предложена Паскуэтти [31] для плавления и перекачивания расплава. [c.353]

    Свойства полиамидов и области их применения. Полиамиды— твердые роговидные полимеры с высокой температурой плавления (например, 218°С у капрона, 264°С у найлона). Высокая температура плавления объясняется значительным процентом кристаллической фазы и образованием водородных связей между цепями (рис. 66, а). Полиамиды обладают хорошими механическими свойствами. Они весьма стойки к истиранию и отличаются высокой разрывной прочностью (700—750 кгс1см ). Плотность 1,14. Полиамиды регулярного строения очень стойки к действию обычных растворителей. Только сильно полярные соединения, такие, как фенол, крезолы, муравьиная кислота, растворяют полиамиды такого типа. Смешанные полиамиды растворяются при нагревании в низших алифатических спиртах (метиловом, этиловом) в смеси с небольшими количествами воды (от 10 до 20%). При остывании и хранении растворы смешанных полиамидов преврашаются в гелеобразную массу. При нагревании гель можно снова превратить в прозрачный раствор. [c.236]

    Поликонденсацией ароматических дикарбоновых кислот (изо-фталевой или терефталевой) и ароматических диаминов (например, парафенилендиамина) получают высоконагревостойкие полиамиды с температурой плавления около 350° С  [c.240]

    Обработка безводным Ма2СОз. В пробирке смешивают пробу с Ыа2СОз и нагревают до плавления. Если при этом ощущается запах аммиака, испытуемый материал относится к полиамидам если выделяются пары с резким запахом — к полиуретану. Полиакрилонитрил имеет сладковатый запах и пары, дающие щелочную реакцию (рН>7). [c.303]

    Температура плавления политетраметилентерефталамида 436 °С, полиэтилентерефталамида 455°С. Полимеры растворимы в серной и трифторуксусной кислотах. Из растворов полиалкилентерефталамидов в трифторуксусной кислоте можно формовать волокно. Использование для синтеза Ы-замещенных диаминов приводит к получению полиамидов с более высокой температурой плавления. [c.386]

Рис. 61. Влияние длины цепи на температуру плавления полиамидов на основе 4,4 сульфонилдибензайной кислоты. Рис. 61. <a href="/info/840660">Влияние длины цепи</a> на <a href="/info/382137">температуру плавления полиамидов</a> на основе 4,4 сульфонилдибензайной кислоты.
    Формование полиамидного волокна производится из расплава. Из герметически закрываемого бункера-питателя полимер в виде крошки поступает на плавильную решетку. Плавление происходит в токе азота во избежание разложения полиамида. Расплавленная масса продавливается через фильеру. Выходящие и фильеры струйки расплавленной массы поступают о шахту пря-днльнои. машины, где охлал<даюрся током воздуха и застывают. Диаметр [c.206]


Смотреть страницы где упоминается термин Полиамиды плавление: [c.55]    [c.55]    [c.447]    [c.448]    [c.450]    [c.450]    [c.455]    [c.457]    [c.512]    [c.533]    [c.616]    [c.141]    [c.160]   
Кристаллизация полимеров (1966) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте