Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волокна методы формования

    ВОЛОКНА методом формования из РАСПЛАВА [c.457]

    Волокно Метод формования Скорость формования, м/ман Температура прядения, С [c.18]

    В главах, посвященных получению волокон, рассматриваются некоторые теоретические предпосылки процесса формования волокна, методы формования, вытягивания, текстильной подготовки и термофиксации волокон. [c.6]

    При прививке виниловых мономеров к исходному полимеру привитые цепи участвуют в образовании структуры в процессе формования и вытягивания волокна. Формование полиолефиновых волокон протекает при высоких температурах, поэтому выбор мономеров для прививки резко ограничивается (боковые цепи должны обладать достаточной термостойкостью). Трудно предвидеть также влияние боковых цепей на вязкость расплавов полимеров, которая является одной из важных характеристик, определяющих возможность переработки полимера в волокно методом формования из расплава. [c.226]


    Какой метод формования волокна используется в производстве вискозного волокна  [c.422]

    Экструзионное формование, являющееся наиболее важным промышленным методом, включает в себя все возможные способы формования, которые сводятся к продавливанию расплава через фильеру. К этой группе относится формование волокна из расплава, экструзия пленок и листов, труб, шлангов и профилей, нанесение изоляции на провода и кабели. Все методы формования, входящие в эту группу, также являются непрерывными процессами в отличие от методов, относящихся к трем последним группам, которые носят периодический характер. [c.31]

    Один и тот же полимер, обладая высокой технологичностью по отношению к одному методу, может оказаться непригодным для формования другими методами. Поэтому следует говорить о технологичности только по отношению к конкретному методу формования. Так, говоря о формовании волокна, имеют в виду применительно к экструзии — шприцуемость (способность экструдироваться без поверхностных дефектов, называемых дроблением поверхности и [c.611]

    При формовании волокна из расплава полимера тонкие струйки расплава из отверстий фильеры попадают в пространство, где они охлаждаются и затвердевают. Если формование волокна производится из раствора полимера, то могут быть применены два метода сухое формование, когда тонкие струйки поступают в обогреваемую шахту, где под действием циркулирующего теплого воздуха растворитель улетучивается и струйки затвердевают в волокна мокрое формование, когда струйки раствора полимера из фильеры попадают в так называемую осадительную ванну, в которой под действием различных содержащихся в ней химических веществ струйки полимера затвердевают в волокна. [c.410]

    Получение прядильного вискозного раствора производится в основном так же, как и в производстве вискозного шелка. Процесс формования и отделки кордной нити осуществляется б настоящее время на машинах непрерывного действия, на которых производится формование, промывка и сушка волокна и кручение нити. Общая продолжительность процесса на этих машинах составляет 5—10 мин. Этот прогрессивный непрерывный метод формования и отделки кордной нити имеет большие преимущества . [c.215]

    При исследовании свойств изотактического полипропилена очень быстро обнаружилось ценнейшее его свойство, а именно практическая пригодность полимера для получения из него волокна существующими методами формования. [c.229]


    Существуют два метода формования полипропиленового волокна из раствора и из расплава полимера [23]. Первый наряду с бесспорными преимуществами имеет и ряд существенных технологических недостатков, поэтому он до сих пор не нашел промышленного применения и рассматривается здесь лишь в общем виде. [c.236]

    Метод формования волокна прядением из раствора полипропилена имеет следующие преимущества перед формованием из расплава  [c.237]

    В заключение следует подчеркнуть, что несмотря на многие свои преимущества метод формования полипропиленового волокна из раствора полимера пока не получил в промышленности химических волокон сколько-нибудь значительного распространения. [c.238]

    Для получения мембран в виде полых волокон применяют следующие методы сухой, сухо-мокрый, мокрый и метод формования из расплава. Сухой метод применяют для получения полого волокна из раствора пропусканием его через фильеры с последующим удалением растворителя на воздухе или в струе инертного газа. Для образования сквозного канала в волокне используют фильеры с иглой, которая закреплена в центре отверстия фильеры (рис. 24-2, а). Вместо иглы иногда используют капилляр (см. рис. 24-2,6), через который под давлением подают газ. [c.317]

    Нерастворимость политетрафторэтилена и высокая вязкость его расплава исключают обычные методы формования волокон — из расплава или раствора. Для получения волокон из политетрафторэтилена применяют специальные методы. Волокна обладают сравнительно невысокой механической прочностью, но высокой химической стойкостью, поэтому их целесообразно применять в условиях агрессивной среды и высокой температуры, которых не могут выдержать другие синтетические волокна. [c.119]

    При формовании из расплава струйки расплавленного полимера, охлаждаясь, затвердевают и превращаются в волокна. Если формование производится из раствора полимера в сравнительно легколетучем растворителе, волокна образуются в результате испарения растворителя из струек прядильного раствора, обдуваемых воздухом ( высыхание струек). Такой метод образования волокна носит название сухого формования. Прядильные растворы полимеров в труднолетучих растворителях перерабатывают в химические волокна методом так называемого мокрого формования. По этому методу волокна образуются из струек прядильного раствора под действием веществ, содержащихся в жидкой осадительной ванне (раствор реагентов), в которую поступают струйки. Обычно формование волокна из струек происходит в результате разбавления растворителя, при этом полимер как бы выпадает в осадок. В некоторых процессах мокрого формования компоненты прядильного раствора вступают в химическое взаимодействие с компонентами осадительной ванны, при этом состав образующихся волокон может отличаться от состава растворенного полимера. [c.443]

    Сухое формование карбоцепных волокон аналогично формованию ацетатного волокна. При использовании мокрого метода формования карбоцепных волокон в отличие от формования вискозного волокна не происходит химических реакций между компонентами прядильного раствора и осадительной ванны. Струйки прядильного раствора по выходе из фильеры попадают в осадительную ванну, разбавляющую растворитель, в результате полимер коагулирует в форме волокон. Они собираются в нить или жгут и поступают, в соответствующий приемный механизм. Нити обычно наматываются на бобину, жгут штапельного волокна непрерывно поступает в отделочный агрегат, где промывается, отделывается и сушится. [c.464]

    Общие положения о механизме фиксации жидкой нити при мокром методе формования дают возможность описать некоторые частные особенности процесса, в том числе и принципы подбора осадительной ванны, а также выбора других условий формования волокна. [c.268]

    Осуществление ориентационной вытяжки волокон в процессе их формования представляет большую сложность. Об этом кратко упоминалось при анализе метода сухого формования волокна. Аналогично обстоит дело и при мокром методе формования. Как в том, так и в другом случаях полимерная система проходит в процессе фиксации жидкой нити широкий диапазон вязкостей, вплоть до практически нетекучего состояния. Задавая соответствующий градиент скорости нити в шахте или ванне, можно ориентировать макромолекулы и надмолекулярные образования вдоль оси волокна. При этом устанавливается определенное равновесие между ориентирующим действием потока и дезориентирующим действием теплового движения. Как только снимается растягивающее напряжение, вновь происходит полная разориентация полимера. [c.286]

    Ниже перечислены основные типы рассмотренных волокон, формы, в которых они применяются, и методы формования. Сюда же включены и не рассматривавшиеся выше детально углеродные волокна, которым предрекают большое будущее. [c.288]


    При сухом методе формования растворитель испаряется с поверхности струйки раствора, поэтому создается градиент концентрации полимера по радиусу волокна. Это приводит к образованию уплотненного поверхностного слоя, воспринимающего нагрузку а вследствие этого обладающего большей ориентацией, чем внутренние слои. [c.240]

    Наряду с широко распространенными методами формования волокна из растворов и расплавов полимеров в последние 20 лет был разработан коллоидный метод формования волокна , появление которого было вызвано необходимостью создания волокон из полимеров со специальными свойствами высокой хемо- и термостойкостью. [c.242]

    Коллоидный метод формования позволяет получать волокна из любых полимеров и их смесей и особенно из волокнообразующих полимеров, обладающих большой молекулярной массой, неплавких и нерастворимых в доступных растворителях. В большинстве слу- [c.242]

    При мокром методе формования волокна толщиной до 220 т.екс (типа сарлан ) 10—50%-ный р-р полимера с вязкостью 20—100 н-сек/м (200—1000 пз) пропускают через фильеру (диаметр отверстия 0,1—0,3 лл) в ванну с водой или 30%-ным водным р-ром диметил-формамида при темп-ре ок. 80"С. Время пребывания (осаждения) нити в ванне ок. 1 мин. По выходе из осадительной ванны нити проходят 3—4 промывочных аппарата, куда подается вода с темп-рой 90—95°С и где они вытягиваются примерно в 1,5 раза. Скорость формования 20—50 м/мин. Бобины с волокном подвергают термообработке при 120°С в течение 20—30 ч. [c.28]

    Как известно, одним из методов формования волокна является формование из раствора. Поэтому большой интерес представляют система полимер — растворитель и процессы, происходящие при растворении полимера, при выделении его из раствора, а также поведение полимерных молекул в присутствии растворителя, т. е. процессы взаимодействия полимера с жидкостью, с которой он пришел в соприкосновение. Это взаимодействие выражается в поглощении полимером жидкости. Если поглощение происходит на границе раздела фаз, то этот процесс называется процессом сорбции. Сорбция в объеме вещества называется абсорбцией, сорбция а поверхности— адсорбцией. В зависимости от природы адсорбционных сил различают также адсорбцию физическую и химическую — хемосорбцию. Если при адсорбции изменяется объем полимера, говорят [c.139]

    Формование волокна — самая ответственная операция и заключается в том, что прядильная масса подается в фильеру (ннте-образователь), имеющую большое число мельчайших отверстий в донышке в зависимости от метода формования, обычно от 100 до 6000 и выше. Выдавленные через отверстия фильеры тонкие струйки раствора попадают в осадительную ванну, где в результате химических реакций происходит осаждение или выпадение полимера из раствора, т. е. идет отвердение струек и из каждой струйки образуется элементарное волокно. Это способ мокрого прядения из раствора, по которому получается вискозное и медноаммиачное [c.208]

    Метод формования волокон прядением нз концентрированных растворов полипропилена основан на способности полимера растворяться при высоких температурах во многих органических растворителях тетралине, декалине, различных минеральных маслах (например, газовом, веретенном, парафиновом) и в особенности в технических бензинах с температурой К1шения более 180°С [24—29]. Концентрация полимера в прядильном растворе 15—907о. Общий принцип получения волокна по этому методу заключается в том, что нагретый до необходимой температуры раствор полипропилена продавливается дозирующим насосом через фильтр и узкие отверстия фильеры в осадитель. [c.236]

    Во всех методах формования тепло- и(или) массообмен определяется последовательно протекающими процессами внутр. (в волокне) и внеш. (в окружающей среде) переноса. В большинстве случаев основное сопротивление представляют процессы теплопроводности и(или) диффузии внутри волокна и окружающем его ламинарном пограничном слое, к-рые достаточно хорошо описываются дифференц. ур-ниями переноса, представленными в циливдрич. координатах. [c.118]

    Участок волокна до фиксации при современных методах формования имеет длину от нескольких миллиметров (формование вискозного волокна по мокрому методу) до нескольких сантиметров (формование по сухому методу). Исходя из предельно возможного значения этого расстояния 50 см, а также из ориентировочных величин поверхностного натяжения 20 дин/см, скорости формования 300 м1мин и диаметра отверстия фильеры 0,01 сл (все эти данные приближенно характеризуют сухое прядение полимеров в органических растворителях), можно найти минимальную вязкость, которой должен обладать раствор, чтобы обрыв нити не произошел раньше ее отверждения. Подставляя эти величины уравнение Хираи, получим  [c.245]

    На стадии отвернадения волокна в шахте прядильной машины (при сухом методе формования) или в осадительной ванне (при мокром методе) создается не только макроструктура, но возникают и микроструктурные особенности, которые во многом определяют свойства готовых волокон. Тонкая структура застудневших растворов полимеров уже описывалась в предыдущих главах. Там же указывалось, что в зависимости от условий застудневания возникает широкий набор структур, в которых размеры отдельных элементов и их формы сильно изменяются. [c.279]

    Одним из важнейших практических аспектов структурной механики ориентированных полимеров является получение химических волокон. Однако, как это ни парадоксально, принятые в настоящее время методы формования, основанные на нрименении фильер и экструзии, ограничивают возможности получения разнообразных форм ориентационного порядка. Подобное ограничение обусловлено двумя причинами. Первая связана с состоянием отправной системы — раствора или расплава волокнообразующего полимера. Как правило, эта система в значительной степени лишена структуры и молекулы в ней находятся в более или менее перепутанном состоянии, образуя флуктуационную сетку. Наличие узлов и перехлестов в этой сетке [32, 33] неминуемо должно приводить, по чисто кинетическим причинам, к складыванию макромолекул на себя во время ориентации поэтому получение складчато-фибриллярной структуры в результирующем волокне практически неизбежно. [c.66]

    Достижение высокого начального модуля даже для грубо сфор-мованного волокна обычно означает, что полимер способен образовывать высокопрочные/високомодульные волокна. Высокая прочность волокна, в значительной мере зависящая от его качества (например, отсутствие полостей, трещин и т. д.), может быть часто увеличена путем оптимизации процесса прядения, например правильным выбором растворителя, метода формования и условий коагуляции. [c.170]

    Обычно из очень вязких растворов полимеров формуют волокна методами, применяемыми при получении ацетилцеллюлозных или полиакри-лонитрильных волокон. Для получения спандекс-волокон можно применять формование волокон из расплава, но этот процесс трудно контролировать из-за опасности гелеобразования или спгивания. [c.405]

    Химический метод формования используется при получении гнд-ратцеллюлозных и некоторых синтетических волокон, например, на основе полиимидазолов. Их получают мокрым способом из концентрированных растворов промежуточных веществ (полупродуктов), которые при взаимодействии с компонентами осадительной ванны в процессе формования частично или полностью переходят в нерастворимое состояние, чем и определяется химический состав будущего волокна. Например, в случае формования вискозного волокна в растворе находится ксантогенат целлюлозы, который под действием серной кислоты осадительной ванны переходит в гид-ратцеллюлозу по схеме (см. стр. 32). [c.239]

    Впервые коллоидный метод формования волокна был разработан в США и Японии для получения волокон из политетрафторэтилена, выпускающихся в промышленном масштабе под марками тефлон и тойофлон, а в Советском Союзе — полифен. Очевидно, этот метод может быть применен для всех видов полимеров. [c.243]

    Применимость той или иной дисперсии для формования волокна определяется рядом требований. В коллоидном методе формования определяющими являются размер и форма дисперсных частиц, кон-центращш дисперсии, кинетическая и агрегатная устойчивость дисперсии. [c.243]

    При сухом методе формования получают волокна (тииа ликра ) толщиной 5—200 текс. Оборудование процесса аналогично применяемому в производстве ацетатного волокна. П. в. ио этому методу формуют из 40 — 60%-ного р-ра полимера. При этом пучок волокон из фильеры попадает в шахту, куда 1[ропускается горячий воздух или инертный газ (250—300°С). Сухое, но еще клейкое волокно обрабатывают водой или тальком и подают, предварительно подвергая авиважной обработке, сушке и термофиксации, на приемный механизм со скоростью 200—900 м мин. [c.28]

    ПТФЭ — кристаллизующийся неплавкий и нерастворимый полимер (см. Тетрафторэтилена полимеры). (Эн не м. б. переработан в волокно обычными методами формования химических волокон (из р-ра или расплава). Для получения волокна из ПТФЭ разработана специальная технология, основанная на использовании в качестве исходного прядильного материала коллоидных систем, содержащих частицы ПТФЭ. [c.394]

    Для того чтобы избежать повторений, те вопросы, которые будут освещаться в других статьях, в сопряженной статье лишь упоминаются. Так, например, в Акрилонитрила полимзрах лишь упомянуто о применении полиакрилонитрила для производства волокна и сделана ссылка на статью Полиакрилонитрильные волокна , где описаны методы формования этих волокон и приведены их свойства. Общие методы производства химических волокон описаны в статье Формование химических волокон. Сравнение свойств различных синтетических волокон приведено в Волокнах синтетических . В статье Акрилонитрила полимеры рассказано о путях получения этих полимеров по различным механизмам. Однако общие закономерности реакций описаны в специальных статьях, например Радикальная полимеризация , Анионная полимеризация . В статье Акрилонитрила полимеры ириведепы, в частности, диэлектрические свойства полиакрилонитрила сопоставление различных полимеров по этим свойствам дано в статье Дх электрические свойства . [c.5]

    Концентрация ацетилцеллюлозы в прядиль1гом р-ре зависит от выбранного метода формования волокна. При сухом способе oira составляет 20—25% (вязкость р-ра 80—150 н-сек1м или 800—1500 пз), нри мокром — 10—12% (вязкость р-ра 10—20 и-сек/м , или 100— [c.117]

    Хорошо известно, что целый ряд синтетических волокон и пленок из полиэтилентерефталата (ПЭТФ), полиамидов — поликаира-мнда (ПКА), нолигексаметилендиамина, нолиолефинов — полиэтилена (ПЭ) и полипропилена (ПП) — получаются из расплава этих полимеров иутем охлаждения калиброванных струек расплава до температуры формования, которая значительно ниже температуры его отверждения. Следовательно, в основе данного процесса образования волокна лежит чисто физический принцип перехода полимера из жидкого вязко-текучего состояния в твердое аморфное или кристаллическое без изменения химического состава. По этому основному признаку механизма образования волокна такой процесс, естественно, относится к группе физических методов формования, хотя технологически он осуществляется как сухим (охлаждение воздухом), так и мокрым способом (охлаждение водой). [c.239]


Смотреть страницы где упоминается термин Волокна методы формования: [c.197]    [c.253]    [c.239]    [c.175]    [c.397]    [c.377]    [c.48]   
Краткий справочник по химии (1965) -- [ c.412 ]

Введение в химию высокомолекулярных соединений (1960) -- [ c.118 , c.121 , c.216 , c.220 ]




ПОИСК





Смотрите так же термины и статьи:

Формование волокна

Формование методы



© 2025 chem21.info Реклама на сайте