Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вольфрам термической диссоциацией

    На вольфраме образуется поверхностный окисел У 0, энергия активации реакции Е = 23 ккал-моль . 0 способен затем разлагаться термически с образованием атомарного кислорода Е = 160 ккал-моль ). Подвижные частицы, обнаруженные в электронном проекторе, по-видимо-му, представляют ШО, а не О. Таким образом, вольфрам является активным катализатором диссоциации кислорода и ведет себя при этом так же, как в водороде. [c.116]


    Очень чистый торий можно получить термической диссоциацией тетраиодида на раскаленной проволоке согласно реакции ТЫ4—>-Th- -2l2. Соответствующая методика описана в гл. 22 для металлического титана. Так как обычно в качестве материала для проволоки используют вольфрам, то сначала получают прутки тория, внутри которых находится проволока из вольфрама. В последующих опытах разложение иодида проводят на этих прутках, вследствие чего загрязнение вольфрамом оказывается незначительным. Можно изготовить ториевую проволоку с поперечным сечением 0,6 см, длиной 100 см и массой 200—250 г (типичные загрязнения 0,02 масс.% С, <0,01 масс.% О, <0,01 масс.% N). [c.1222]

    Термическая диссоциация в вакууме окислов, входящих в состав испаряемого диэлектрика, является неизбежным процессом для большинства кислородных соединений. Для обратного перевода низших окислов в высшие полученную пленку необходимо подвергать окислительной термообработке. Это далеко не всегда допустимо, потому что на подложке уже имеется тонкая металлическая пленка нижней обкладки. Диссоциация окислов может быть следствием их интенсивного химического взаимодействия с материалом испарителя (тантал, вольфрам). Например, при возгонке ВаО с платинового испарителя в пленке получают 99% ВаО, а с танталового испарителя— 1% ВаО и 99% металлического Ва. [c.144]

    Тот факт, что атомарный водород не реагирует с металлическим свинцом, используется для того, чтобы отличить атомарный водород от таких свободных алкильных радикалов, как метил и этил, которые легко реагируют со свинцовыми зеркалами (см. стр. 16 136). Лангмюр нашел ценное промышленное применение большого количества тепла, выделяющегося при каталитической рекомбинации атомов водорода. Он предложил горелку с атомарным водородом для высокотемпературной сварки. Ток газообразного водорода продувается через электрическую дугу между вольфрамовыми электродами и затем направляется на свариваемые металлические поверхности. Атомы водорода, образующиеся при термической диссоциации в электрической дуге, рекомбинируют на металлической поверхности, вызывая местный перегрев, в то же время сам водород препятствует окислению. С помощью этого метода можно плавить и обрабатывать такие тугоплавкие металлы, как вольфрам, и добиться удовлетворительной сварки в случае специаль- [c.97]

    Металлический вольфрам получают восстановлением при нагревании трехокиси вольфрама водородом, углеродом или окисью углерода, металлотермическим восстановлением окислов вольфрама металлическим алюминием, цинком, кальцием пли магнием, термической диссоциацией гексахлорида вольфрама, восстановлением при нагревании гексахлорида вольфрама водородом, нагреванием трисульфида вольфрама с окисью кальцпя, наконец, катодным восстановлением некоторых соединений вольфрама. [c.341]


    Карбонил. Вольфрам образует с окисью углерода гексакарбонил Ш(СО) й. Это блестящие, бесцветные кристаллы, возгоняющиеся при нагревании выше 50° и разлагающиеся выше 100—150°. При их разложении на стенках сосуда образуется блестящий зеркальный налет металла. Ш(СО)в получается действием окиси углерода на порошок вольфрама при низком давлении и высокой температуре, а также восстановлением УС1з цинком или алюминием при 70—100° в этиловом спирте под давлением 145—220 атм окиси углерода. При термической диссоциации Ш(СО)в образуются тетракарбонил Ш(С0)4, три-карбонил Ш(СО)з и др. Гексакарбонил при комнатной температуре устойчив против действия воды, крепких серной, соляной и разбавленной азотной кислот. Вода не растворяет его, спирт и эфир растворяют незначительно, а хлороформ — хорошо. Ш(СО) з кипит под давлением при 175°. Хлор и бром, взаимодействуя с ним, образуют галогениды вольфрама. Ш(СО) в образует производные с рядом органических соединений — аминами и др. Может быть использован для получения вольфрамовых покрытий и как полупродукт для получения хлоридов и органических соединений вольфрама. [c.239]

    ПИРОМАТЕРИАЛЫ (от греч. лир -огонь) — материалы, получаемые в результате химической кристаллп.за-ции нз газовой фазы прп повышенных т-рах. П. подразделяют на пиролитические, образующиеся при термической диссоциации газообразных соединений, и газофазные (реакции ме к-ду двумя и более соединениями). Их получают в виде покрытий (см. Газофазные покрытия), композиционных материалов и порошков. Практически все хим. элементы, большинство важнейших тугоплавких соединений п мпогие вещества с особыми фпз. св-вами получают в виде П. Различают П. углеродные (важнейшие сажа, пирографит, эпитаксиальные слои на алмазах) металлические (важнейшие йодидные титан, цирконий и гафний, фторидные — вольфрам, карбонильные — железо, никель, молибден и вольфрам) тугоплавкие (важнейшие карбиды титана, вольфрама, ниобия, тантала, кремния и бора, нитриды титана, ниобия, алюминия и бора, окислы алюминия, циркония, титана, крем- [c.177]

    Хорошим критерием чистоты металла является примесная проводимость, которую при низких температурах можно измерить непосредственно в виде остаточного сопротивления. По его величине можно судить о том, что еше очень мало металлов получено в очень чистом состоянии. Это относится именно к тем металлам, для которых есть очень хорошие методы очистки, т. е. электролиз для легкоплавких металлов или же высокотемпературная обработка для тугоплавких. Таким является вольфрам, который можно получить термической диссоциацией хлорида. Напротив, титан и цирконий показывают еше очень большую величину остаточного сопротивления, даже когда они получены из иодидов. Иодидный метод особенно эффективен, если речь идет об удалении таких неметаллических примесей, как кислород, азот и углерод. Часто не замечали того, что этот метод малоэффективен для металлических примесей — в большинстве случаев они также переходят из иода в иодид и поэтому попадают в очишенный образец. Поразительные изменения, происходяшие при удалении кислорода из титана и циркония, привели к тому, что часто переоценивают влияние кислорода на свойства. С другой стороны, остаточные сопротивления могут дать и заниженные данные о чистоте, потому что при подготовке образца для измерения легко снова внести небольшие количества кислорода. Это наблюдалось Фастом в случае титана и циркония, а также следует из данных Уайта и Вудса для ванадия, когда после прокаливания в вакууме остаточное сопротивление увеличилось [6]. [c.347]

    Термическая диссоциация талогенидов бора на накаленной металлической нити. Основные примеси кремний, железо, алюминий, кальций, магний. Материал нити молибден, вольфрам, тантал. [c.93]

    При термической диссоциации гексахлорида вольфрама образующийся металлический вольфрам оседает на нагретой докрасна нитп  [c.343]

    В литературе высказывалось мнение, что истинные карбонилы образуют лишь некоторые элементы (никель, железо, кобальт, рений, хром, молибден, вольфрам, часть платиновых металлов). При этом предполагалось наличие у карбонилов так называемых типич1ных карбонильных овойств. К их числу относили высокую летучесть, растворимость в индиферентных органичеоких растворителях, термическую диссоциацию на металл и окись углерода, комплексное строение. Ряд исследователей считает, что летучие карбонилы могут образовывать только элементы с 5-валентными электронами. Но карбонил углерода обладает всеми типичными карбонильными свойствами. Он летуч, разлагается на углерод и окись углерода, растворяется только в органических растворителях, имеет координационные связи (комплексное строение), и в то же время его центральный атом обладает -5- и р- валентными электронами. [c.12]


Смотреть страницы где упоминается термин Вольфрам термической диссоциацией: [c.13]    [c.243]   
Неорганическая химия Том 2 (1972) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Диссоциация термическая



© 2025 chem21.info Реклама на сайте