Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Выделение углеводородов, полученных действием

    Амины, полученные восстановлением продуктов нитрования без предварительного отделения нейтрального масла, могут быть легко от него освобождены это достигается обработкой аминов рассчитанным количеотвом соляаой или серной кислоты и извлечением полученных солей аминов разбавленным метанолом при встряхивании. Избыток минеральной кислоты вызывает выделение солей аминов из водных растворов в виде масел. Эти масла растворимы в углеводородах и эмульгируют их при прибавлении воды. Соли аминов с органическими кислотами также растворимы в воде при избытке кислоты. Высокомолекулярные амины могут быть превращены в алкилированные аминокислоты действием хлоркарбоновых кислот. Особенно просто получают алкиламиноуксусные кислоты. В виде натриевых солей при подходящей длине алкильной группы они обладают прекрасными моющими свойствами  [c.346]


    Синтезы гомологов бензола алкилиро-ванием ароматических углеводородов. Большое значение имеет алкилирование ароматических углеводородов, т. е. введение в бензольное ядро алкильных радикалов при этом получаются различные гомологи бензола. Алкилирование осуществляется различными методами. Например, при действии на бензол хлористых алкилов в присутствии безводного хлористого алюминия (катализатор) атомы водорода ядра замещаются радикалами и с выделением галогеноводорода образуются гомологи бензола (реакция Фриделя — Крафтса, 1877). Например  [c.339]

    Чтобы убедиться в том, что под действием хлористого алюминия кольцо циклогексена, по крайней мере в своей главной части, не изомеризуется, была проведена дегидрогенизация низшей фракции продукта конденсации бензола с циклогексеном (т. кип. 236—237° С). Углеводород был проведен над катализатором (платина на угле) при 310° С со скоростью 2 капли в минуту. При этом наблюдалось бурное выделение водорода, в конце же трубки собиралась твердая масса с характерным запахом дифенила. После перекристаллизации этого продукта из этилового спирта вещество имело т. пл. 69—70° С и представляло собой дифенил. Из 10 г исходного углеводорода получено 7,5 г дифенила. Таким образом, исследованная низшая фракция представляла собой, несомненно, циклогексилбензол. [c.256]

    Действуя на винилацетилен водородом в момент выделения, можно присоединить два атома водорода по месту тройной связи. Какой углеводород при этом образуется Какой углеводород получится при исчерпывающем каталитическом гидрировании винилацетилена  [c.104]

    По аналогии с предыдущими работами я предполагал при действии индивидуальных магнийорганических соединений на фуриловый спирт получить жирные кетоны. Реакция должна была протекать вначале на холоду с выделением углеводорода  [c.113]

    Хлорное олово легко вступает в реакцию с реактивом Гриньяра в толуоле, ксилоле, петролейном эфире и других растворителях. Магнийорганические соединения в этих случаях могут быть получены действием галоидного алкила на магний в углеводородах при незначительной добавке эфира в качестве катализатора [45—50а] или без него [47, 51, 52]. Для инициирования реакции в отсутствие эфира необходимо нагревание до 80—100° С, после чего она идет с выделением тепла. Особенно легко вступают в реакцию высшие галоидные алкилы, начиная с бутила. Температуру реакции поддерживают в интервале 80—150° С, регулируя скорость введения галоидного алкила. [c.208]


    Таким газом является, например, водо род, и указанные авторы доказали, что действие водорода аналогично действию метана. Однако ввиду того, что растворимость водорода в пропане значительно меньше, чем в метане, требуются более высокие давления, чтобы обеспечить те же результаты выделения углеводородов, что и с метаном. Авторы нашли, что давление 120 ат водорода дает то же выделение компонентов, которое получается под давлением 30 ат газа из Дашава, содержащего высокий процент метана. [c.141]

    Цинкорганические соединения имеют состав 2пКг. Это неустойчивые самовоспламеняющиеся на воздухе легколетучие жидкости. Уже отмечалось, что А. М. Бутлеров использовал их для многих принципиально важных для теории строения органических синтезов. Цинкдиалкилы получают действием КГ на цинковые стружки в атмосфере благородного газа. Они разлагаются с выделением углеводородов при действии воды, спиртов, аминов и других соединений с подвижным атомом водорода. Единственное их широкое использование известно в синтезах (З-оксикислот по способу Реформатского из а-галогенопроизводных карбоновых кислот и кетонов  [c.579]

    Эти реакции обмена обычно осуществляются при комнатной температуре. (При слишком низких температурах скорости реакций могут быть малы. Ньюман и Кале [176] сообщили, что литиевое производное этоксиацетилена нельзя получить действием бутиллития. Однако они проводили реакцию при —10°. Возможно, при комнатной температуре эта реакция протекает.) Об окончании реакции можно судить по прекращению выделения газообразного углеводорода. При 25° реакция заканчивается через несколько минут. [c.146]

    Шарль Адольф Вюрц (1817—1884) получил медицинское образование. Некоторое время работал у Ю. Либиха в Гиссене и у Ж. Дюма в Париже. В 1853 г. он заместил Ж. Дюма на кафедре химии в Медицинской школе, вскоре занял кафедру на медицинском факультете в Сорбонне. А. Вюрц был сторонником идей Ш. Жерара н выступал, в частности, в защиту О. Лорана и Ш. Жерара от нападок Г. Кольбе. Его исследования разнообразны. После получения первичных аминов (1849) он предложил способ выделения углеводородов действием натрия на галоидалкилы (1855). В следующем году он получил этиленглнколь. Ему принадлежит также открытие феноЛа, холина и других соединений. Им описана альдольная конденсация - (независимо от А. П. Бородина). [c.131]

    Пары амилена, смешанные с водородом, превраш(аются под действием электрических разрядов 3 озонаторе (приблизительно на 85%) в жидкие продукты, в которых преобладают насыщенные углеводороды типа s Hi, (или их изомеры) Газообразньши продуктами при этом являются ацетилен, аллилен, ви-нилацетилен и диацетилен. Из амилена, как чистого, так и смешанного с азотом, не было получено насыщенных углеводородов. Водород действует, повидимому, не только как гидрирующий, но и как дегидрирующий агент, связываясь с водородным атомом ненасыщенного углеводорода и вызывая соединение получающихся углеводородных остатков. Это обстоятельство объясняет образование соединений с удвоенным числом атомов углерода. Амилен претерпевает также ряд других превращений, в том числе перемещение связей, перегруппировки, циклизацию, молекулярное расщепление, образование простых и кратных связей и полимеризацию. На основании своих данных Meneghini и Sorgato не смогли провести грани между этими различными превращениями. Кроме того в условиях опыта имеют место реакции, ведущие к увеличению внутренней энергии, а потому эндотермический характер тройной связи ведет к образованию большого количества ацетиленовых углеводородов. При применении трубки, дающей коронирующий разряд, доля превращенного амилена оказалась значительно меньше, хотя происходящие изменения были более глубокими при этом происходит также выделение свободного угля. [c.293]

    Для достижения более глубокой дифференциации высокомолекулярных углеводородов Н. И. Черножуков применил комплексную методику, в которой комбинируются три различных метода. Данная методика позволяет осуществить дальнейшее разделение сложных углеводородных смесей по типам структур и получить смеси, более простые, содержащие в своем составе группы углеводородов, более близкие по строению и молекулярному весу. Сначала дистиллатные масляные фракции подвергались депарафинизации с применением трехкомпонентного избирательно действующего растворителя (бензол толуол ацетон = 40 20 40), обычно используемого при депарафинизации масел в заводском процессе их получения. Остаточные продукты сначала деасфальтизировались, а затем депарафинизировались. Освобожденная таким образом от парафиновых углеводородов фракция подвергалась затем дальнейшей дифференциации при помощи двух методов метода адсорбционной хроматографии на силикагеле с целью разделения на три основные структурные группы углеводородов (парафино-циклопарафиновая и две фракции ароматических углеводородов) и метода комплексообразования с карбамидом, с целью выделения углеводородов, структура молекул которых хотя и носит гибридный, т. е. смешанный характер, но содержит в своем составе парафиновые цепочки достаточно длинные, чтобы образовать с карбамидом кристаллические комплексы или так называемые соединения включения [116, [c.303]


    КИСЛОТОЙ. Полученный таким образом пропилацетилен, кипящий при 48—50°, был запаян в трубку со спиртовой щелочью и нагрет 24 часа при 170°, после чего выделенный из трубки углеводород оказался лишенным способности реагировать с аммиачным раствором полухлористой меди и после сушки плавленым хлористым кальцием кипел при 55.5—56°. Тот же углеводород получается, если при 170° действовать спиртовой щелочью прямо на хлорюр метилпропилкетона. Свойства полученного углеводорода показывают, что пропилацетилен в этих условиях изомеризуется подобно этилацетилену. По аналогии с последним, пропилацетилен при изомеризации должен дать метилэтилацетилен  [c.53]

    В выделенных нами фракциях можно было ожидать на личие конденсированных ароматических углеводородов, поэтому каждая из них была обработана пикриновой кислотой. На исследуемой фракции действовали насыщенным спиртовым раствором пикриновой кислоты, после чего реакционную смесь кипятили на водяной бане в течение одного часа вымораживанием и фильтрованием производили удаление образовавшегося осадка от углеводородов, не вступивших в реакцию. Исследуемые фракции указанным способом обрабатывались до отрицательной реакции на пикриновую кислоту, что указывало на полное выдаление конденсированных ароматических углеводородов. Повторной перекристаллизацией осадка из этилового спирта получали пикраты в чистом виде, определением температуры плавления которых устанавливали природу конденсированных ароматических углеводородов. [c.94]

    Серная кислота. Этот вопрос более полно будет рассмотрен в главе об очистке. Приведем здесь только общие замечания. Серная кислота с этиленовыми углеводородами дает реакции трех родов 1) Образование серных эфиров. Такая реакция вызывается некоторыми катализаторами, например солями серебра и ртути, окисью ванадия и т. д. эти серные эфиры при гидролизе дают спирты. Этилен дает этиловый спирт. С высшими углеводородами можно получить при действии HaSOi также вторичные и третичные спирты. 2) Концентрированная серная кислота вызывает реакции полимеризации этиленовых углеводородов, причем склонность к полимеризации возрастает вместе с молекулярным весом. 3) Наконец при употреблении во время очистки нeпpeдed ьныx фракций нефти весьма крепкой серно й кислоты происходит выделение SOj, что указывает на окисление нефти и восстановление серной кислоты. [c.31]

    Действие серы на ненасыщенные углеводороды ведет к присоединению по месту двойной связи трех атомов серы, в результате чего при 160° С получаются тиозониды, которые при более высокой температуре разлагаются с выделением сероводорода. [c.92]

    Впервые комплексы карбамида получил немецкий исследователь Ф. Бен-ген в 1940 г. Было установлено, что алифатические соединения с достаточно длинной прямой цепью образуют с карбамидом сравнительно непрочные кри сталлические комплексы, в то время как разветвленные и циклические соединения таких комплексов не образуют. Наиболее четко данное свойство карбамида проявляется при действии на нормальные парафиновые углеводороды С,— g и выше, однако образование аддуктов наблюдается и в случае прямоцепочечных олефинов, а также кислот, эфиров и т. д. Позднее было обнаружено, что аналогичным свойством но в отношении соединений изостроения обладает тиомочевина S(NH2).2. Склонность к аддуктообразованию проявляют также селенкарбамид, теллуркарбамид, гидрохинон и многие другие соединения. Однако наибольшее развитие и широкое промышленное применение имеют лишь различные варианты использования карбамида для выделения н-парафинов из керосино-газойлевых фракций и масел, получившие название карбамидной депарафинизации. [c.314]

    Для выделения метановых углеводородов нормального строения нз нафтено-парафиновой фракции керосина 170 г этой фракции, 70 г метанола, 100 г мочевины перемешивают в течение получаса при комнатной температуре. Образовавшийся комплекс н-нарафинов с мочевиной отфильтровывают н после разршения комплекса горячей водой получают н-парафнны. Следует отметить, что н-парафиновые углеводороды, выделенные с помощью мочевины, могут содержать примеси слаборазветвленных парафиновых углеводородов, так как мочевина может образовать комплекс с изопарафинами, имеющими пе-разветвленную цепь, состоящую нз восьми и более углеродных атомов. Примесь разветвленных углеводородов можно удалить действием на углеводороды хлорсульфоновой кислоты, которая реагирует с изопарафинамн по третичному атому углерода, не затрагивая при этом углеводороды с прямой цепью. [c.57]

    Реакции с магнийорганическими соединениями. По сообщению Море [228], единственным продуктом реакции метилового эфира бензолсульфокислоты с магнийорганическими соединениями является какое-то летучее сернистое соединение с неприятным запахом. Несколько позже выяснено, что таким путём можно получать некоторые углеводороды [211в]. Этиловый эфир л-толуолсульфокислоты дает с магнийбромфенилом смесь, из которой удалось после разложения водой выделить этилбензол и бензол. Однако при действии на тот же эфир магнийбромэтила [229] единственны выделенным продуктом реакции является магниевая соль л-толуолсульфокислоты, а /-ментиловый и -борниловый эфиры той же кислоты с магнийорганическими соединениями дают соответственно ментен и камфен. Эти наблюдения указали на зависимость, хода реакции от природы магнийорганического соединения и самого эфира и послужили толчком для более тщательного ее изучения. Для выяснения механизма реакции большое значение имело наблюдение, что одним из продуктов взаимодействия магнийбромфенила с этилмолочным эфиром л-толуолсульфокислоты [2126, 230] является этиловый эфир а-бромпропионовой кислоты. Б реакционной смеси, полученной из магнийбромфенила и этилового эфира л-толуолсульфокислоты, несомненно, содержался также- [c.367]

    Известная аналогия между действием алюмосиликатов и хлористого алюминия открывает широкие возможности для различных предположений. Дегидратация этилового спирта иад окисью алюминия при 450° дает в основном этилен, но одновременно образуется небольшое количество гомологов полиметиленовых углеводородов. Пропилен при нагревании до 330—375° под давлением образовал жидкие продукты, все фракции которого, кроме низших, содержали полиметиленовые углеводороды. Подобные же наблюдения известны для изобутилена (450°, давление 47 атм, продолжительность реакции от 0,5 до 4 часов). Из продуктов полимеризации выделен 1,1,3-триметилциклопентан. В этом случае полиметилен образовался не из димера изобутилена, и авторы предположили, что снерва образуется своеобразный циклический димер 1,1,3,3-тет-раметилциклобутан, который распадается на бивалентный радикал, изомеризующийся в другой, способный циклизоваться в поли-метилет[. А. И. Богомолов получил полиметиленовые углеводороды термокатализом жирных кислот при 250° над алюмосиликатами. [c.99]

    Выделение парафино-нафтеновых углеводородов с минимальным содержанием ароматических и сераорганических соединений достигается специальными приемами (схема 6). Во-первых, проводится стадия предварительной деасфальтизации в 40-50-кратном избытке гексана, последующее обессмоливание сырья на мелкопористом адсорбенте с определенным размером пор. Данный адсорбент обладает молекулярно-ситовым действием, в отличие от других сорбентов позволяет селективно отделить смолы от ароматических углеводородов и основной части сераорганических соединений. Во-вторых, чистота парафино-нафтеновой части достигается последующим хроматографированием на мелкопористом адсорбенте ШСМ с размером частиц 100-200 меш. Эффективность разделения достигается за счет высокой удельной поверхности адсорбента и высокого соотношения адсорбентхырье. Оптимальное разделение получено при соотношении из расчета 100 г адсорбента на [c.57]

    Антраценовое масло получается из антраценовой фракции каменноугольной смолы после выделения из нее фракции сырого антрацена . Антраценовое масло подается из отстойников в йериодически действующие плавильники, где происходит удаление влаги и легкокипящих углеводородов и осаждение механических примесей. Для улавливания легкокипящих веществ и удаления паров влаги служат циклоны-сублиматоры. Из плавильников через дозатор ан- [c.151]

    Михаил Иванович Коновалов (1858—1906) окончил в 1884 г. Москов ский университет. В 1896—1899 гг.—профессор Московского сельскохозяйственного института, с 1899 г.—профессор Киевского Политехнического инсти-гута. Первые работы М. И. Коновалова были посвящены изучению природы кавказской нефти. Он разработал методы выделения, очистки и получения различных производных нафтенов (стр. 545), изучал действие брома и бромистого алюминия на нафтены. В 1888 г, Коновалов открыл нитрующее действие разбавленной азотной кислоты при нагревании ее с предельными углеводородами (стр. 358). Исследования в этой области он обобщил в докторской диссер гации Нитрующее действие азогной кислоты на углеводороды предельного ха рактера (1893). Предложенный им метод позволил получить и исследовать многочисленные новые нитросоединения. М. И. Коновалов разработал способ получения из нитросоединений оксимов (стр. 194), спиртов, альдегидов и кетонов, Он использовал также реакцию нитрования для определения строения углеводородов, создал метод разделения нитросоединений и их очистки [c.56]

    Оказалось, что нитрозофенол, который первоначально получается при действии азотистой кислоты на фенол, находится в равновесии с моноксимом хинона. Это равновесие, по-видимому, существует и при превращениях, в которых участвует нитрозофенол [9, 10]. Выделение моноксима хинона из смеси впервые, по-видимо-му, было осуществлено Ходжсоном [11]. На самом деле моноксим лучше получать нитрозированием в концентрированном растворе серной кислоты [12]. Соединения такого типа также можно получить с низким выходом (но зато простым методом выделения) окислением смеси ароматического углеводорода и гидроксиламина (пример а). [c.215]

    Мощность и материальный баланс. Для выделения бензола и толуола на отечественных НПЗ, как правило, используются блоки, входящие в состав комбинированных установок риформинга и экстракции ксилолы получают на специальных установках. Мощность действующих блоков и установок составляет 250—300 тыс. т/год в качестве экстрагента применяются ди-, три- и тетраэтиленглнколи. Ниже приводятся балансы экстракции ароматических углеводородов из катализатов, полученных риформированием фракций 62—105 °С (I) и 62—140°С (II)  [c.105]


Смотреть страницы где упоминается термин Выделение углеводородов, полученных действием: [c.163]    [c.365]    [c.351]    [c.252]    [c.281]    [c.577]    [c.34]    [c.242]    [c.326]    [c.150]    [c.145]    [c.76]    [c.207]    [c.251]    [c.85]    [c.332]    [c.51]    [c.295]    [c.586]    [c.128]    [c.364]    [c.53]    [c.193]    [c.463]    [c.78]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Выделение углеводородов



© 2025 chem21.info Реклама на сайте