Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растрескивание влияние кислорода

    Противостарители — вещества, замедляющие процесс старения резин озонного растрескивания, разрушения влиянием многократных деформаций, теплового и светового старения. Физические противостарители (парафин, воск) растворяются в резине при вулканизации и затем диффундируют на поверхность, образуя пленку, стойкую к воздействию кислорода и озона. Для замедления термоокислительного старения в резины вводят антиоксиданты неозон Д, ацетонанил Р, диафен ФП, амид тиофосфоновой кислоты (Б-25), сантофлекс, неозон, флектал. Рекомендуется использовать смесь различных антиоксидантов. При этом возможны три случая проявления эффективности  [c.26]


    РЕЗИНЫ СТАРЕНИЕ — изменение свойств резины в результате необратимых химич. превращений под влиянием тепла, света, кислорода и других факторов. Необратимые локальные разрушения под воздействием напряжения и окружающей среды (утомление, коррозионное растрескивание) также могут рассматриваться как процессы старения, несмотря на то, что химич. изменения нри этом очень малы. Особенности старения резин, по сравнению с остальными тинами полимеров, связаны е легкостью их окисления из-за наличия С=С-связей у большинства каучуков, а также с использованием резин как эластичного материала обычно в напряженном состоянии. В связи с этим характерными для резин являются процессы, связанные с их старением в напряженном состоянии пек-рые виды химич. релаксации, озонное растрескивание и т. д. Старение резин, так же как и остальных полимеров, обычно связано с образованием свободных радикалов, инициирующих деструкцию или структурирование. Механич. напряжения способствуют развитию локальных деструктивных [c.306]

    Влияние кислорода на высокотемпературное солевое КР еще менее ясно, чем влияние воды. В большинстве работ изучали влияние давления кислорода путем уменьшения избыточного давления в системе. Было показано, что уменьшение давления на 98 Па устраняет растрескивание сплава Ti — 5А1 — 2,5Sn [90]. Подобное снижение чувствительности при уменьшении давления отмечали и для сплава Ti — 8А1 — 1Мо — IV [145]. Однако при этом возможно понижение и влажности, и содержания кислорода в системе, т. е. результаты следует рассматривать как предварительные. [c.346]

    Один из недостатков полиэтилена — сравнительно быстрое старение, протекающее под влиянием кислорода воздуха в особенности при нагревании. В результате термоокислительной деструкции происходит разрыв связей с образованием свободных радикалов. Для замедления процесса старения и предохранения покрытия от растрескивания в полиэтилен вводят специальные стабилизаторы. В качестве светостабилизаторов для предохранения от действия ультрафиолетовых лучей применяется газовая сажа, вводимая в количестве 0,5—1,5% или сернистые соединения, вводимые в количестве примерно 0,15%, а в качестве термостабилизаторов — ароматические амины в количестве около 0,2%. [c.66]

    При выборе типа фильтра должны учитываться следующие основные факторы 1) масштабы производства 2) концентрация исходной суспензии по твердой фазе с учетом возможности ее повышения за счет предварительного сгущения 3) сопротивление осадка и его изменение с повышением давления 4) сопротивление подобранной фильтрующей перегородки (тканевой, намывной и др.) 5) требования к чистоте фильтрата и изменению содержания твердой фазы в фильтрате в случае отдувки осадка обратным током фильтрата, воды, воздуха или пара 6) максимально и минимально допустимые температуры фильтрации, учитывающие наличие в фильтрате солей и возможность отложения солей в фильтрующей перегородке и дренажной системе фильтра 7) необходимость частичной или полной промывки осадка на фильтре, не прибегая к репульпации осадка 8) требования к влажности осадка 9) легкость отделения (снятия) осадка от фильтрующей перегородки 10) растрескивание осадка на фильтрующей перегородке в процессе его промывки и отжима влаги И) требования к материалу фильтра 12) влияние кислорода воздуха на вещества, содержащиеся в суспензии при просасывании воздуха через слой осадка. [c.31]


    При выборе типа фильтра должны учитываться следующие основные факторы 1) масштабы производства 2) концентрации исходной суспензии по твердой фазе с учетом возможности ее повышения за счет предварительного сгущения 3) удельное сопротивление осадка и его изменение с повышением давления и в процессе промывки 4) удельное сопротивление подобранной фильтрующей перегородки (тканевой, намывной) 5) возможность изменения удельного сопротивления осадка и фильтрующей перегородки введением в суспензию коагулянтов, волокнистых и крупнодисперсных частиц и другими способами 6) требования к чистоте фильтрата и проскок твердой фазы в фильтрат в случае отдувки осадка обратным током фильтрата, воды, воздуха или пара 7) максимально и минимально допустимые температуры фильтрования, учитывающие наличие в фильтрате водорастворимых солей 8) вероятность отложения солей, содержа-, щихся в жидкой фазе суспензии в фильтрующей перегородке и дренажной системе фильтра 9) необходимость частичной или полной промывки осадка на фильтре, не прибегая к репульпации осадка 10) требования к влажности осадка в случае его сушки или промывки 11) легкость отделения (снятия) осадка с фильтрующей перегородки 12) растрескивание осадка на фильтрующей перегородке в процессе его промывки и оа-жима влаги 13) сползание осадка с фильтрующей поверхности в процессе его набора или промывки 14) при вакуум-фильтрах возможность вскипания фильтрата 15) требования к материалу фильтра 15) влияние кислорода воздуха на вещества, содержащиеся в суспензии при просасывании воздуха.через слой осадка. [c.38]

    На утомляющийся образец, помимо влияния кислорода, большое действие оказывает механическая работа деформации. На то, что окисление является только одним из факторов растрескивания при изгибах, указывает тот факт, что расположение антиоксидантов в порядке их убывающей эффективности не совпадает с их расположением по активности в качестве реагентов против растрескивания при изгибах. [c.278]

    На утомляющийся образец, помимо влияния кислорода, большое действие оказывает механическая работа деформации. На то, что окисление является только одним из факторов растрескивания при изгибах, указывает тот факт, что расположение антиоксидантов Б порядке их убывающей эффективности не совпадает с их расположением по активности в качестве реагентов против растрескивания при изгибах. Особое внимание следует обращать на те затраты энергии деформации, которые приходятся на долю так называемых фрикционных потерь, т. е. на преодоление внутреннего трения. [c.277]

    Влияние кислорода. Как известно [2], [56], [57], [591, кислород играет существенную роль при коррозии металлов в ненапряженном состоянии не меньшее, а, пожалуй, еще большее значение его при коррозионном растрескивании. [c.124]

    О существенном влиянии кислорода на скорость коррозионного растрескивания стали в этих условиях говорят данные этих же авторов, приведенные на фиг. 93. Такие же данные были получены и другими авторами [196]. [c.126]

    Предотвращение контакта с аммиаком (или кислородом и другими деполяризаторами в присутствии аммиака). Отсутствие влияния ЫНз трудно гарантировать, так как уже следы его вызывают растрескивание. Пластмассы, содержащие следы аминов или разлагающиеся с их образованием, оказывают постоянное разрушающее воздействие на неотожженную латунь. Содержащие удобрения стоки с сельскохозяйственных угодий и воздух над удобренными почвами также вызывают растрескивание латуни. В то же время трубки латунных конденсаторов не растрескиваются при контакте с конденсатом котловой воды, содержащим ЫНз, так как концентрация кислорода в нем очень мала. [c.339]

    Высокопрочные титановые сплавы системы Т —А1 при содержании алюминия более 5 % могут быть подвержены коррозионному растрескиванию при наличии концентратов напряжений в водных растворах хлоридов. Склонность к растрескиванию устраняется комплексным легированием молибденом и вольфрамом и оптимальными режимами термообработки (закалка с 900—950 С). Сопротивление коррозионному растрескиванию снижается при наличии в сплавах кислорода и водорода. Положительное влияние оказывают легирование никелем около 2 % и палладием около 0,2 %, наличие в сплавах небольшого количества р-фазы. [c.76]

    Как правило, это не зависит от микроструктуры. Однако обработка в р-области, при которой получают игольчатые структуры, например р-5ТА (высокотемпературная обработка на твердый раствор+старение), приводит к увеличению вязкости разрушения. В приведенном на рис. 74 примере увеличение вязкости разрушения составляет 33 МПа-м При этом следует заметить, что улучшение таких свойств зависит и от состава сплава (см. рис. 73). В менее чувствительных к КР сплавах, например в сплаве — 4А1—ЗМо—IV положительное влияние технологической обработки в р-области более выражено для высоких уровней прочности [41]. В высокочувствительных к КР сплавах, например сплавах на основе Т — 8А1 или сплавах с высоким содержанием кислорода, структуры, полученные р-обработкой на твердый раствор с последующим быстрым охлаждением, относительно устойчивы к КР. В сплавах с такими структурами после старения нивелируется благоприятное влияние термической обработки в р-области за счег свойственной чувствительности к КР. Эти эффекты более детально описываются в разделе по практическим аспектам коррозионного растрескивания титановых сплавов. [c.367]

    Влияние структуры на коррозионное растрескивание в других средах не было детально исследовано. Приведенная выше дискуссия для водных растворов в большинстве случаев применима для области 11 роста трещин в метанольных растворах. В таких средах, как горячая соль, вредное влияние алюминия и кислорода и положительное влияние молибдена кажется повторением известного для других сред. [c.413]


    Как правило, все а-сплавы и супер-а-сплавы склонны к коррозионному растрескиванию под напряжением, тогда как а- и Р-сплавы стойки к этому виду коррозии. Данные о влиянии морской воды на титановые сплавы представлены в табл. 49. В настоящее время сплав —6А1—4У с низкой концентрацией дефектов внедрения (малым содержанием кислорода) считается одним из лучших среди всех промышленных сплавов, стойких к коррозионному растрескиванию под напряжением в морской воде. [c.126]

    Разрушение эластомеров под влиянием механических сил происходит в результате локального прекращения взаимодействия между атомами и молекулами, приводящего к разрыву, растрескиванию, раздиру и другим явлениям. Процесс ускоряется содержащимися в воздухе кислородом, озоном, диоксидом азота, влагой. [c.111]

    Исследования в атмосфере чистого азота и кислорода показали, что влияние среды на растрескивание несущественно. Однако внутренние трещины в пластмассах всегда образуются реже, чем поверхностные, из-за большей дефектности поверхности образца. [c.96]

    При кратковременных нагрузках и низких температурах пластическое разрушение происходит за счет деформаций аморфных областей. При удлинении продолжительности нагружения или при повышении температуры происходит рост кристаллитов, поглощающих аморфные области, поэтому наблюдается хрупкое разрушение. Возможно также, что хрупкое разрушение происходит в результате растрескивания под влиянием действия воды и кислорода. [c.179]

    Старение в атмосферных условиях полимеров, особенно таких, как натуральный и синтетические каучуки, связано с одновременным воздействием на них ряда факторов, из которых наиболее важными являются кислород и свет. Химическое действие этих факторов было рассмотрено в гл. 4 и 2 соответственно. Их влияние на физические свойства материала при статических условиях обычно сводится к увеличению жесткости, а в случае крайне длительных экспозиций — к образованию сетки тонких трещин. Совершенно иначе происходит растрескивание в растянутом каучуке. В этом случае трещины возникают раньше, чем появятся какие-либо другие признаки старения. Эти трещины всегда перпендикулярны направлению растяжения и образуются в тени или даже в темноте так же быстро, как и при ярком солнечном освещении. Вильямс [40] первый отметил, что возникновение этих трещин происходит в результате действия озона. [c.204]

    Суммируя результаты многочисленных исследований, можно отметить, что на коррозионную статическую усталость значительное влияние оказывает содержание углерода и степень раскисления стали. Мягкие не-раскисленные стали с содержанием углерода от 0,03 до 0,1%, которые имеют в себе значительное количество азота и кислорода, весьма нестойки к коррозионному растрескиванию. Раскисленные малоуглеродистые стали, особенно перлитной структуры, наиболее стойкие — они поддаются коррозионному растрескиванию только при нагружениях, превышающих предел текучести. [c.122]

    В отсутствие кислорода К. н. выдерживает длительное нагревание при 200 °С при 220 °С начинается его деструкция. Нагревание в течение нескольких часов при 250—300 °С приводит к превращению жидких продуктов деструкции К. н. в структурированные, не растворимые в бензоле. При нагревании (300—350 °С) в вакууме более 60% каучука деструктируется до образования летучих продуктов и менее 40% остается в структурированном состоянии. Под влиянием УФ-лучей в отсутствие кислорода К. н. структурируется, выделяя летучие продукты. При фотоокислении К. н. сначала деструктируется, а затем структурируется. Под действием ионизирующих излучений происходит интенсивное структурирование К. н. Озон быстро присоединяется по двойным связям К. н. с образованием озонидов и др. продуктов реакция сопровождается растрескиванием К. н. и резин на его основе (см. Озонное старение). [c.499]

    На склонность малоуглеродистых сталей к коррозии под напряжением большое влияние оказывают содержание в них углерода и степень раскисления стали. Растрескивание спокойных сталей, содержащих 0,2% углерода, наблюдается только при пластической деформации, вызванной какими-либо технологическими операциями. Мягкие нераскисленные стали, содержащие 0,03—0,1% углерода и незначительные количества азота и кислорода, обладают сильной склонностью к коррозионному растрескиванию, что связано с выделением карбидов и нитри- [c.275]

    Алюминий стимулирует образование гидрида и меняет характер расположения дислокаций в сплаве. Если титан имеет ячеистое распределение дислокаций, то его сплавы с алюминием— копланарное. Это приводит к расширению ступенек выхода полос скольжения и, следовательно, затрудняет их репассивацию. Кроме того, алюминий задерживает репассивацию из-за увеличения критического тока пассивации титана и вызывает его охрупчивание в результате образования упорядоченной фазы Т1зА1 после определенных термических воздействий. Вследствие этих причин алюминий как легирующий элемент увеличивает склонность титана к коррозионному растрескиванию (рис. 4.42) [434]. Содержание в титане более 5% алюминия и более 0,3% кислорода способствует усилению чувствительности к растрескиванию. Добавка элементов, стабилизирующих р-фазу, например молибдена, оказывает положительное влияние на сплавы Ti—А1, но не приводит к улучшению свойств титановых сплавов, содержащих кислород [434]. [c.174]

    Влияние внешней среды при эксплуатации резиновых изделий является одной из важных причин их динамической усталости. Воздействие кислорода воздуха приводит к окислительной деструкции и структурированию резины. При этом ее усталостная прочность резко снижается. Присутствие озона даже в небольших концентрациях вызывает растрескивание резин, причем скорость образования трещин возрастает с увеличением деформации. Наибольшей устойчивостью к окислительной деструкции обладают каучуки с наименьшим содержанием химически активных связей. [c.102]

    По условиям протекания коррозионного процесса разли чают атмосферную коррозию, протекающую под действием атмосферных, а также влажных газов, газовую, обусловленную взаимодействием металла с различными газами — кислородом, хлором и т, д. — при высоких температурах, коррозию в электролитах, в большинстве случаев протекающую в водных растворах и в зависимости от их состава подразделяющуюся на кислотную, щелочную и солевую. При контакте металлов, имеющих разные стационарные потенциалы в данном электролите, возникает контактная коррозия, а при одновременном воздействии коррозионной среды и постоянных или переменных механических напряжений — коррозия под напряжением. Понижение предела усталости металла, возникающее при одновременном воздействии переменных растягивающих напряжений и коррозионной среды, называют коррозионной усталостью. Кроме того, различают еще коррозионное растрескивание металла,, возникающее при одновременном воздействии коррозионной среды и внешних или внутренних механических растягивающих напряжений. Этот вид разрушений характеризуется образованием транскристаллитных или межкристал-литных трещин. Под влиянием жизнедеятельности микроорганизмов возникает также биокоррозия. Разрушение металла от коррозии при одновременном ударном действии внешней среды называют кавитационной эрозией. Без участия коррозионного воздействия среды эрозия протекает как процесс только механического износа металла. Многие из перечисленных условий возникновения и развития коррозионных процессов встречаются и в пароводяных трактах ТЭС. [c.26]

    Вредное влияние меди, железа, никеля сказывается также, если они находятся в виде ионов в водном растворе, вследствие их катодного осаждения на алюминии. Поэтому в замкнутых полиметаллических системах, в которых циркулируют водные растворы, наблюдается усиление скорости коррозии алюминия и его сплавов, даже если они не находятся в электрическом контакте с элементами из меди. При определенных условиях они склонны к специфическим видам коррозионного разрушения — питтингу, межкристаллитной коррозии, растрескиванию, расслаиванию. Склонность алюминиевого сплава к питтипгообразованию определяется разностью между потенциалом активирования п.т и стационарным потенциалом E . Чем больше эта разность, тем больше стойкость сплава к питтингообразованию и меньше вероятность, что незначительные изменения условий эксплуатации (анодная поляризация сплава за счет неодинакового распределения кислорода, попадание окислителя и др.) выведут сплав из пассивного состояния. [c.55]

    Помимо сплошности первоначально образующегося слоя окислов на защитные свойства окисных пленок оказывают влияние и другие факторы. Большое значение имеет соответствие между кристаллическими структурами образующихся окислов и металла. Чем больше различия между этими структурами, тем большие напряжения возникают в соприкасающихся кристаллических решетках металла и окисла. Накопление в растущей пленке остаточных внутренних напряжений приводит к механическому ее разрушению (вспучиванию, отслаиванию, растрескиванию). Когда объем окислов намного больше объема окислившегося металла (Уок> ме), в окисной пленке возникают напряжения сжатия. У вольфрама, имеющего соотношение ок Уме=3,35, условие получения сплошной пленки окислов выполняется. Однако большая разница в объемах окисла Оз и металла обусловливает возникновение значительных внутренних напряжений. В результате окисная пленка на вольфраме получается очень хрупкой, со слабыми защитными свойствами. Предпосылкой высоких защитных свойств пленки является малая электропроводность образующихся окислов. Большая стойкость алюминия к окислению кислородом объясняется низким значением электропроводности АЬОз, которая при 1000°С равна 10 " Ом Х Хсм- . При относительно высокой электропроводности окислов возможно образование пленок с хорошими защитными свойствами в связи с решающим влиянием других факторов. Например, удельная электропроводность СггОз больше, чем у N 0, почти в 10 раз, в то же время защитные свойства у окислов хрома выше, чем у окислов никеля. [c.28]

    Большое влияние кислорода воздуха на скорость коррозионного растрескивания указанного сплава подтверладают также опыты тех же авторов, проведенные в условиях полного погружения и при обрызгивании 3%-ным раствором Na l (табл. 23). [c.125]

    О чрезвычайно большом влиянии кислорода на скорость коррозионного растрескивания аустенитной нержавеющей стали в чистой воде при повышенном давлении и температуре свидетельствуют данные Вильямса и Эккеля [159], которые установили, что для того, чтобы начался процесс коррозионного растрескивания стали в указанных выше условиях, необходимо наличие кислорода в воде в количестве [c.126]

    Таким образом, тюмимо того, что в модели допущен ряд упрощений, в ней не учитываются усложняющиеся факторы перекристаллизация, окисла, диффузия по границам зерен, вторичные реакции восстановления Ме + Ме О, растрескивание пленки окисла, влияние примесей посторонних газов к кислороду и т. п. [c.89]

    Обширные исследования влияния солей металлов на напряжение растрескивания различных полиамидов выполнили Данн и Сансом [90—93]. С помощью галоидов металлов удалось выявить два вида воздействия образование комплексов между металлом и карбонильным кислородом и помехи образованию водородных связей (для хлоридов 2п, Со, Си, Мп) или трещин в растворе Ь1С1, СаСЬ, МдСЬ или Ь1Вг [90—91]. Воздействие тиоцианатов металлов на ПА-6 аналогично воздействию галоидов соответствующих металлов [92]. Среди различных нитратов наибольшее влияние на напряжение образования трещин в пленках ПА-6 оказывает Си(МОз)г [93]. [c.388]

    В результате комплексного исследования влияния легирования на стойкость сталей к растрескиванию в сероводородсодержащих электролитах предложен ряд низколегированных сталей, обладающих в д нных средах повышенной стойкостью [28]. Кроме того, предложены стали, легированные редкоземельными элементами, а также высоколегированные сплавы Ni—А1 — сплав после горячей прокатки и старения, Ni- u— Fe - сплавы типа инконель после отж-ига или холодной обработки и ряд других. Есть основание считать, что редкоземельные элементы рафинируют сталь от металлоидов (кислород, водород), вязывают мышьяк, серу и фосфор в тугоплавкие соединения и вместе с тем снижают перенапряжение вьщеления водорода на металле, препятствуя водородной хрупкости [8]. [c.120]

    НЫХ сплавов — А1 — О [34], содержащих 4, 6 и 9 % А1 и соответственно 0,05, 0,15 и 0,30% О. При испытании на КР были встречены трудностп вследствие прерывистой природы растрескивания, что было отнесено к большому размеру зерна в этих материалах по сравнению с толщиной образца. Результаты [34], представленные на рис. 67, демонстрируют, во-первых, влияние уровня содержания кислорода при постоянном содержании алюминия (6%) в закаленных образцах [c.360]

    Влияние двуокиси азота на старение изучали Гобел, Барг-мейер. Брасс и Манн [491]. Окислительная деструкция, инициированная окислительно-восстановительными системами с участием кислорода при 50° на примере СКС-30 и других каучуков, изучалась по изменению вязкости растворов во времени [492]. Дитце [493] проведены рентгеновские исследования бутадиенстирольных сополимеров, подвергавшихся старению. Облучение образцов резины приводит к их растрескиванию и снижению сопротивления разрыву [494, 495]. [c.641]

    Протекание химических процессов при растрескивании, естественно, заставляет при рассмотрении этого явления учитывать новые факторы. Среди них необходимо от.метить эффекты катализа и ингибирования химических реакций, связанных с растрескиванием. Первые значительно сильнее сказываются в полипропилене, чем в полиэтилене. Влияние меди в качестве катализатора, а ее соединений как ингибиторов окислительных реакций в полипропилене обсуждалось Хансеном и др. , а также Расселом н Пa кaнoм . Интересно, что на этот полностью насыщенный полимер медь оказывает такое же вредное влияние, как на натуральный каучук, в котором двойные связи обычно считаются самым уязвимым местом для действия кислорода. Оба полимера можно защитить одним и тем же путем. Стабилизатор Ы,Ы -ди-Р-нафтил-п-фенилендиамин, используемый для подавления вредного действия меди в резине, оказывается эффективным и для полипропилена в тех случаях, когда выцветание на поверхность не препятствует его применению. Оксанилиды и родственные им соединения, являющиеся ингибиторами окисления, инициированного медью и не выцветающие на поверхность, также защищают полипропилен от деструкции. [c.373]

    Никель подвергается преимущественно общей коррозии. Однако иногда встречаются и местная коррозия, и выпадение зерен, и коррозионное растрескивание. Никель требует соответствующего раскисления иначе он хрупок, плохо поддается прокатке и подвержен межкристаллитной коррозии. Все эти явления можно объяснить выделениями по границам зерен закиси никеля (эвтектика №0 — N1, содержащая 1,1% N10, т. е. около 0,24% кислорода, плавится при 1438° С) и образованием хрупких включений сульфида никеля (эвтектика N1382—N1, содержащая 21,5% 5, плавится при 645°С). Незначительные примеси серы (0,003—0,005%) не оказывают влияния (сера в количестве до 0,012% растворима в никеле) начиная [c.358]

    Помимо кислорода активно реагируют с полимерами такие компоненты воздуха, как озон, двуокись азота, двуокись серы, соединения хлора и фтора, аммиак, пары воды, сероводород, углеводороды. Последние выделяются с выхлопными газами автомобилей . Загрязненность воздуха активными примесями в последние годы сильно увеличивается, особенно в крупных городах и индустриальных центрах. Так, в Лос-Анжелосе ежедневно выбрасывается в атмосферу 13 730 т вредных веществ, из них 12 420 т автомобилями (в том числе 2 тыс. т углеводородов и 530 т окислов азота) Наличие выхлопных газов приводит в свою очередь к резкому (в 50—100 раз) увеличению в воздухе концентрации озона , который разрушает резину и текстиль серная кислота, образующаяся при окислении и взаимодействии с водой сернистого газа, разъедает лакокрасочные покрытия, вызывает ускоренное изнашивание текстильных материалов, порчу бумаги и кожи . Еще более агрессивна азотная кислота, образующаяся из двуокиси азота. С двуокисью азота и двуокисью серы, в особенности при наличии кислорода и ультрафиолетовых лучей взаимодействуют разветвленный полиэтилен, полипропилен, полистирол, полиметилметакрилат, полиакрилонит-рил найлон, поливинилхлорид, резины из полибутадиена, натурального каучука и бутилкаучука . Уменьшение долговечности хлопка и триацетатного волокна при малых напряжениях в воздухе по сравнению с вакуумом а также снижение сопротивляемости растрескиванию полиметилметакрилата в этих условиях , по-ви-димому, происходит под влиянием влаги воздуха. Следовательно, при эксплуатации изделий даже в обычной среде — воздухе (в том [c.7]

    Выше 700° С параболический закон окисления титана сохраняется только на протяжении начального периода реакции, а далее сменяется линейным. Чем больше температура, тем короче этот период. Для циркония подобные отклонения становятся заметными выше 900° С. Под влиянием натяжений, возникающих в окисном слое после достижения определенной толщины, он растрескивается или становится пористым, утрачивая защитные свойства, а скорость реакции начинает контроли-р01ваться проникновением кислорода к металлу или дроцессами нулевого порядка на поверхности раздела окисел — газ . Константы линейного закона для титана могут быть подсчитаны из табл. 32, причем результаты работ [Л. 101 и 196] согласуются в пределах одного порядка величин. Вблизи 1 000° С поглощение Ог титаном становится нерегулярным во времени из-за чередующегося спекания и растрескивания рутила. Добавка к титану около 5% атомн. железа, циркония и в особенности олова ускоряет окисление, а алюминий и вольфрам, а также растворенный (в количестве 10—15% атомн.) кислород замедляют его. Цирконий, обработанный абразивом, реагирует активнее, че.м протравленный химически. [c.152]


Смотреть страницы где упоминается термин Растрескивание влияние кислорода: [c.317]    [c.455]    [c.55]    [c.360]    [c.402]    [c.89]    [c.502]    [c.383]    [c.102]    [c.66]    [c.455]   
Достижения науки о коррозии и технология защиты от нее. Коррозионное растрескивание металлов (1985) -- [ c.346 ]




ПОИСК







© 2024 chem21.info Реклама на сайте