Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Композиционные материалы методы исследования

    Рассматриваемый здесь вид испытаний применяется для оценки прочности клеевых соединений жестких материалов [26, 73, 208], где измеряемая разрушающая нагрузка Рь (обычно на- правленная перпендикулярно плоскости склейки), отнесенная к площади склейки S (при адгезионном характере разрушения), называется прочностью при нормальном отрыве. Применяется он и для оценки межслоевой прочности в слоистых и армированных материалах [12], где также измеренная величина называется трансверсальной прочностью композита (в отличие от межслоевой сдвиговой прочности). К сожалению, в научной литературе практически нет данных о систематических экспериментальных исследованиях влияния различных параметров моделей и опытов на измеряемую среднюю трансверсальную прочность. Объясняется это, по-видимому, сложностью испытаний, хотя нужда в результатах таких исследований уже сейчас достаточно велика. Поэтому в настоящем разделе мы будем ссылаться главным образом на экспериментальные исследования клеевых соединений, однако получаемые выводы, по нашему мнению, могут быть отчасти распространены и на композиционные (слоистые и армированные) материалы, для которых вопрос о причинах низкой (даже в сравнении с когезионной прочностью матрицы) трансверсальной прочности является одним из главных, особенно, например, в приложении к проблеме монолитности толстостенных изделий из армированного пластика, получаемых методом намотки (цилиндрические и сферические оболочки, трубы и т. д.). В частности, определение трансверсальной прочности обычно осуществляют на образцах, площадь поперечного сечения которых намного меньше площади поверхности разрыва в оболочке. В таких образцах может быть сильным влияние краевого эффекта, в то время как в намоточных оболочках краев практически нет и межслоевой разрыв происходит внутри оболочки. Поэтому вопрос соответствия измеряемой на образцах (дискретных моделях) относительной разрушающей нагрузки с истинной трансверсальной прочностью материала в оболочке пока остается открытым. [c.158]


    Последующий материал этой главы и большей части главы VI посвящен экспериментальному исследованию эффекта соседних звеньев в полимераналогичных превращениях (развитые для этой цели методы можно применять также к изучению кинетики и механизма внутримолекулярных превращений). При такого рода исследованиях принимается, что реакционная способность функциональной группы макромолекулы зависит только от состояния ближайших соседних звеньев — прореагировали они или нет. В этом случае, как показано в гл. II, кинетика процесса, а также распределение звеньев в цепи и композиционная неоднородность продуктов реакции являются функциями трех индивидуальных констант скорости ко, ки 2, которые характеризуют реакционную способность исходных звеньев, имеющих О, 1 и 2 прореагировавших соседних звена соответственно. Естественно, возникает вопрос — может ли быть реализована такая модель полимераналогичного превращения на опыте, в условиях кинетического эксперимента  [c.168]

    Возможность наблюдения акустической эмиссии из полимеров при образовании в них микротрещин ( крейзов ) во многом зависит от характера развития пластических деформаций. Микротрещины в пластичном материале развиваются так плавно и сопровождаются настолько медленной пластической деформацией у вершины растущей трещины, что акустический сигнал оказывается недостаточно сильным, чтобы его можно было с уверенностью отделить от высокого уровня шумов. Только в очень хрупких материалах скачкообразное развитие микротрещин приводит к возникновению достаточно сильных акустических эффектов, которые легко можно обнаружить. Последнее характерно для таких материалов, как поливинилтолуол, который разрушается при деформациях меньше 1 %, низкомолекулярный полистирол и полиметилметакрилат, подвергнутый длительному старению. Применение этого метода для исследования композиционных материалов будет более эффективным, если компоненты материала сильно различаются по своим механическим свойствам. [c.21]

    Развитие энергетики, промьш1ленности, строительства, сельского хозяйства, всех видов новой техники, здравоохранения, совершенствование быта и обеспечение питания человека требует производства во все возрастающих количествах материалов, веществ и препаратов с определенным комплексом механических, физических, химических и биологических свойств. Превращение одних веществ (сырья, полуфабрикатов) в другие, обладающие полезным и заданным комплексом свойств,— главная задача химии и химической технологии. Прогресс техники требует непрерывной работы по повышению прочности, жаропрочности, теплостойкости и химической стойкости конструкционных материалов. Исследования последних лет по химии и физике твердого тела свидетельствуют о широких возможностях дальнейшего повышения прочности и сулят в недалеком будущем получение материалов, обладающих почти теоретическим максимумом прочности, упругости и теплостойкости. Уже сейчас в небольшом масштабе реализован способ получения высокопрочных композиционных материалов на основе нитевидных кристаллов ряда таких веществ, как окись алюминия, окись магния и т. п. Огромное внимание приковано к древнейшему из материалов — стеклу. Разработанные методы упрочнения стекла обещают большой экономический эффект, а уя<е реализованная возможность использования металлургических шлаков для производства ситаллов позволит применить их для массового потребления. Из экспериментальных достижений последних лет следует, что значения прочности обычных межатомных связей не ставят границу максимальной прочности материала. Так, уже теперь при применении высоких давлений и температур можно получать искусственные материалы с твердостью, большей чем у алмаза. [c.150]


    Пример № 1. При разработке процессов полимеризационного наполнения термопластов в качестве наиболее перспективного полимера был выбран полиэтилен высокой плотности, получаемый на катализаторах Циглера, На перво.м этапе исследований был синтезирован высокомолекулярный материал с низкой текучестью расплава. При формировании планов комплексных технологических исследований ставилась задача разработать текучий материал с использованием для этой цели методов регулирования молекулярной массы в ходе синтеза и комбинирование высокомолекулярной оболочки вокруг частиц наполнителя с низкомолекулярной матрицей. В дальнейшем в ходе исследовательских работ выяснилось, что при регулировании молекулярной массы полиэтилена механические свойства композита резко ухудшаются. Не удалось получить оптимального баланса свойств и при смешении высокомолекулярного полимера с низкомолекулярным. Вместе с тем детальное изучение свойств высокомолекулярного композиционного материала показало, что он может представлять самостоятельный интерес как конструкционный материал с высокой ударной вязкостью, хорошей износостойкостью и высокой жесткостью. Однако для его переработки не подходили такие традиционные методы, как экструзия и литье под давлением. Нужно было разрабатывать специальные методы спекания, прессования и штамповки. [c.82]

    Механические свойства композиционных полимерных материалов (КПМ), применяющихся в качестве конструкционных материалов, являются объектом научных исследований сравнительно давно. Изучение влияния состава и свойств компонентов на механические характеристики материала как метода регулирования свойств не потеряло актуальности и до сих пор. Но кроме регулирования механических свойств материала подобные исследования оказались интересными и для физикохимии КПМ. Важной частью этой проблемы является получение информации о механических свойствах межфазных слоев (МФС) связующего, спонтанно возникающих на поверхности наполнителя, а также вопрос о влиянии их на механические характеристики КПМ в целом. В связи с этим и предпринята попытка обобщить имеющийся в нашем распоряжении материал для выявления закономерностей общего характера в механическом поведении композиционных материалов при наличии межфазных слоев. Сведения подобного рода могут быть полезны для решения упомянутых задач [441]. [c.173]

    НЫМ представителем полусинтетических адсорбентов, разработка методов получения и исследование свойств которых является одним из направлений работы нашего научного коллектива. Можно предложить следующее определение полусинтетических адсорбентов это композиционные материалы, приготовленные из природного минерального сырья путем их хемосорбционного модифицирования органическими или неорганическими соединениями, осаждением на них простых или сложных оксидов или другой обработкой, в результате чего получаются сорбенты с отличными от исходного минерала природой поверхности и пористой структурой, сочетающие в себе полезные свойства исходного материала и синтетических сорбентов. [c.213]

    Для регулирования межфазового взаимодействия в вьтсоконаполненной композиционной системе олигомер - огнеупорный наполнитель был использован метод модификации олигомера поверхностно-активными веществами (олигооксипропиленгликоли различной молекулярной массы, четвертичные аммониевые основания и др.). Результаты исследования показывают, что введение ПАВ в олигомер способствует усилению межфазового взаимодействия и позволяет направленно в широких пределах регулировать свойства композиционных материалов. Введение в состав связующего поверхно-стно-активньпс веществ позволило значительно повысить прочность композиционного материала. [c.14]

    Несмотря на то, что теории прочности композиционных материалов посвящено большое число исследований (см., например, [2, 8, 81, 86]), этот вопрос в настоящее время еще находится в стадии разработки. Имеющиеся данные показывают, что построение диаграммы деформирования и определение прочности по уравнению аддитивности позволяют получить лишь ориентировочный результат, поскольку не учитывают влияния статистических отклонений физических и геометрических параметров структуры материалов [98]. Как было показано выше, соответствующий анализ позволил сделать заключение о допустимых отклонениях геометрических параметров структуры от регулярной, а также о допустимых отклонениях прочностных свойств компонентов от среднестатистических. Накопленный экспериментальный материал показывает, что характеристики углепластиков определяются большим числом факторов, прежде всего типом волокна и связующего и условиями получения композита, и в большой степени зависят от методов его испытания. [c.170]

    В книге обобщен теоретический и экспериментальный материал по кинетике механизму различных макромолекулярных реакций, рассмотрены стереохимические и конформациоиные эффекты в реакциях макромолекул, описаны разнообразные методы исследования, распределения звеньев и композиционной неоднородности. [c.2]

    Полиолефиновые композиционные материалы растворимы только в горячих ароматических углеводородах, а при охлаждении раствора до комнатной температуры выпадают в осадок, захватывая частицы минеральных наполнителей, что делает невозможным применение ИК-спектроскопии для идентификации высоконаполненных образцов. Предложен способ выделения минеральных наполнителей [75], основанный на смешении навески композиционного материала с ксилолом и нагревании ее в присутствии соляной кислоты при температуре кипения ксилола (140°С) в течение 30—40 мин с последующим разделением водного и ксилольпого Сутоев. Из ксилольного слоя после удаления ксилола выделяли полиолефин в виде прозрачной пленки, из которой приготовляли образец, пригодный для исследования методом ИК-спектроскопии. Наполнители после выпаривания раствора (если они растворялись в растворе соляной кислоты) и нерастворимые наполнители после отделения фильтрованием и высушивания до постоянной массы (см. п. 1.3.4) анализировали эмиссионным методом. Предложен также способ [76] отделения полиолефииа (полипропилена) путем кипячения навески образца композиционного материала в течение 2,5—3 ч в ацетофеионе с последующим охлаждением раствора до формирования на поверхности полимерной пленки, которую механически отделяли. Выпавшую в осадок неорганическую часть (тальк) и выкристаллизовавшийся из раствора хлорпарафин разделяли фильтрованием, после чего взвешивали. [c.65]


    Предлагаемое читателю первое издание Немецко-русского словаря по химии и технологии силикатов подготовил инж. Ю. Е. Пи-винский, собравший оригинальный и содержательный терминологический материал. Словарь содержит подробно разработанную тер мниологию по керамике, огнеупорам, глазурям и эмалям, а также терминологию по технологии стекла. Из технологии вяжущих з словарь включена терминология, отражающая, в основном, технологию их получения, физико-химические свойства и способы испытания. Приведена основная терминология по минеральному сырью силикатной промышленности, физической и коллоидной химии силикатов, стеклометаллическим и металлокерамическим спаям, асбестовой промышленности, слюдам, шлакам, абразивам, минеральным краскам, порошковой металлургии (металлокерамика), неорганическим покрытиям и композиционным материалам. В словарь включены также основные термины по физике твердого тела, кристаллографии и реологии, часто встречающиеся в литературе по силикатам. Нашла отражение и терминология по методам и аппаратуре для испытания и исследования силикатных материалов. [c.5]

    Моделирование композиционного материала эквивалентной однородной средой недостаточно для исследования локальных пластических деформаций или разрушения, дисперсии волн и решения других задач, определяемых как раз неоднородностью свойств материала по координатам. Естественно, что точное решение подобных задач для неоднородного хматериала возможно только в редких случаях, поэтому были развиты приближенные методы исследования. Из этих методов наибольшее распространение и обоснование получили методы малого параметра и осреднения, основные идеи которых и будут рассмотрены в данном параграфе. [c.123]


Смотреть страницы где упоминается термин Композиционные материалы методы исследования: [c.380]    [c.44]    [c.105]   
Физикохимия неорганических полимерных и композиционных материалов (1990) -- [ c.145 ]




ПОИСК





Смотрите так же термины и статьи:

Материал композиционный

Материалы и методы



© 2025 chem21.info Реклама на сайте