Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экспериментальный материал

    Сопоставляя данные табл. 1 и 2, можно отметить следующее. При прочих равных условиях, очевидно, теплоемкость газов (преимущественно сухих, метанового ряда) выше теплоемкости жидкостных углеводородных систем—нефти или нефтегазовой смеси. Правильность сделанного вывода проверялась нами при обсуждении экспериментального материала по определению Ср для нефти и газа при различных значениях I и р [10]. Известно много различных аналитических и экспериментальных методов определения теплоем костей для твердых, жидких и газообразных веществ [22, 24, 28, 31, 35, 36, 39, 61, 63, 67, 68, 71, 87]. В нашу задачу не входит рассмотрение известных методов вычислений и экспериментального определения величин Ср и с , но следует остановиться на некоторых недостатках этих методов. [c.40]


    Механизм моющего действия сложен и до конца еще не изучен. Накопленный к настоящему времени экспериментальный материал позволяет предположить, что энергетическая сторона данного процесса характеризуется особенностями взаимодействия в системе воздух (кислород)- -смазочная среда-f металл. К основным факторам, определяющим уровень моющих свойств, [c.210]

    Поэтому процесс прямого гидрирования жирных кислот на стационарном катализаторе представляет большой практический интерес. На протяжении ряда лет процесс прямого гидрирования кислот на стационарном катализаторе изучался во ВНИИНефтехиме [95]. К настоящему времени накоплен значительный экспериментальный материал, который позволяет рекомендовать этот процесс для промышленного внедрения. В качестве сырья рекомендованы синтетические жирные кислоты фракции — ie. Весьма существенное влияние на процесс гидрирования оказывает фракционный состав исходных кислот. Наличие в сырье повышенных количеств низкомолекулярных кислот увеличивает коррозию аппаратуры высокого давления, а высокомолекулярные кислоты С20 и выше приводят к быстрой дезактивации катализатора. [c.180]

    Таким образом, ни один из приведенных выше вариантов механизма гидрирования не может объяснить весь имеющийся экспериментальный материал. По-видимому, пока не существует общей схемы гидрирования циклоалкенов. Возможно, что с изменением системы (исходный углеводород, катализатор, растворитель) и условий гидрирования в значительной мере изменяется и механизм реакции. И если в условиях жидкофазного гидрирования при комнатной температуре и атмосферном давлении в качестве промежуточных соединений могут преобладать я-комплексы и образования я-аллильного типа, то в более жестких условиях реакция может идти и по какому-либо другому механизму. В ряде случаев решающую роль могут играть такие факторы, как природа катализатора, геометрия активной поверхности, полярность среды, строение исходного циклоалкена и др. Большую или меньшую роль во всех рассмот- [c.36]

    Выше (стр. И) указывалось, что математический эксперимент [27] тоже дал значение Т = 1,5 для слоя шаров с е = 0,4, однако, с повышением порозности значение Т уменьшалось. В разделе П. 5 сопоставлены значения констант К в уравнении (11.32), полученные на основании обширного экспериментального материала с теоретическим значением К = 4,5 результаты этого сопоставления показывают удовлетворительную применимость значения К = 4,5 для оценки сопротивления зернистого слоя на базе представлений капиллярной модели. [c.36]


    Полученные в наших работах опытные данные, а также рассмотрение обширного опубликованного экспериментального материала, позволяют рекомендовать следующие формулы для расчета коэффициентов тепло- и массообмена в стационарном зернистом слое с непосредственным контактом между зернами. [c.165]

    При определении энтальпий кж Н чистых жидких и парообразных углеводородов, используемых в расчете по уравнениям (1.100) или (1.101), рекомендуется пользоваться опытными данными и лишь при отсутствии надежного экспериментального материала прибегать к эмпирическим соотношениям. [c.59]

    Построение модели-всегда процедура неформальная и, конечно, она сильно зависит от исследователя, его опыта, квалификации и всегда опирается на экспериментальный материал. Модель должна достаточно правильно отражать явления, однако одного этого еще мало. Она должна быть практичной и удобной для использования степень ее детализации и форма представления определяются целями исследования. [c.373]

    История исследований в области химической кинетики знает много примеров случайных открытий важных факторов, имевших решающее влияние на ход реакции и остававшихся до этого неизвестными. В этом смысле большая часть экспериментального материала в химической кинетике в течение какого-то времени обычно носит как бы эмпирический характер. Это, однако, не должно умалять большого прогресса, сделанного в количественном изучении факторов, которые влияют на ход химической реакции и знание которых должно обеспечить основу будущего успеха. [c.14]

    Большая часть из рассмотренного выше экспериментального материала указывает на то, что механизм каталитических реакций на твердых поверхностях включает реакцию атомов (или ионов) катализатора с адсорбатом, причем образуется мономолекулярный слой химически активных промежуточных веществ. Так как первичным актом хемосорбции является химическая реакция, то естественно ожидать, что она может иметь некоторую энергию активации. Вообще хемосорбция является очень быстрым процессом и осуществляется с большой вероятностью при соударении молекулы газа с поверхностью . Зачастую даже в тех случаях, когда поверхностный мономолекулярный слой близок к насыщению и можно было бы ожидать уменьшение скорости сорбции, скорость реакции уменьшается незначительно [46]. Этот факт объяснялся тем, что на поверхности мономолекулярного слоя образуется второй, слабо связанный слой сорбата, который способен быстро мигрировать к незанятым активным центрам поверхности. [c.550]

    Весьма важным является определение конца пробега катализатора и тем более прогнозирование длительности его работы. Вследствие большого числа переменных, определяющих конечный результат, вопрос этот является весьма сложным и на сегодня пока отсутствует общепризнанный метод. Это определяется продолжительностью эксперимента по оценке общей длительности работы данного катализатора, на конкретном сырье, в определенных условиях, что делает весьма дорогим накопление в достаточном объеме экспериментального материала. [c.140]

    Для расчета тепловых эффектов реакций в настоящее время приходится пользоваться таблицами теплот горения или образования из элементов в стандартных условиях, а в некоторых случаях энергиями связей экспериментальный материал по результатам термохимических измерений сконцентрирован в основном в таблицах Ландольта, а также в Справочнике физико-химических величин Технической энциклопедии. Новейшие данные публикуются в специальной литературе. [c.51]

    Опираясь па обширный экспериментальный материал, опубликованный в печати, М. X. Карапетьянц разработал систему, состоящую из шести методов сравнительного расчета. Все они в конечном счете сводятся к нахождению линейной зависимости типа уравнения (17), например  [c.208]

    Несмотря на практический опыт эксплуатации установок для производства ацетилена и соответствующий экспериментальный материал, накопленный в течение последних лет, до сего времени отсутствуют необходимые сведения относительно причин и условий возникновения взрывного распада ацетилена. В связи с этим не случайно высказываются различные точки зре- [c.59]

    В настоящее время накоплен сравнительно обширный экспериментальный материал об основных факторах, определяющих условия безопасной работы с ацетиленом, но для высших ацетиленовых углеводородов таких сведений значительно меньше. Некоторые из высших ацетиленовых углеводородов характеризуются чрезвычайно низким предельным давлением взрывного распада, например, для диацетилена оно около 0,05 атм. Поэтому безопасное обращение с высшими ацетиленовыми углеводородами в производственных условиях возможно практически только при соответствующем их разбавлении газом или паром. [c.62]

    Таким образом, большой экспериментальный материал по изучению механизма полимеризации диеновых углеводородов под [c.130]


    Теоретическое осмысливание экспериментального материала и создание стройной системы знаний свойств веществ и законов химических реакций основано иа следующих методах теоретической физики. [c.20]

    Аналогичным образом устанавливаются типы и подтипы связей С—С. Средние значения энергии типов и подтипов основных связей в молекулах органических соединений рассчитывают на основе большого экспериментального материала по теплотам сгорания. Зная зти значения, можно по методу, описанному выше (стр. 68 , с большой уверенностью рассчитывать теплоты образования соединений с известной структурой. [c.70]

    Рассмотренные количественные подходы на основе анализа механизма гетерогенного катализа не всегда обеспечивают исчерпывающее решение задач прогнозирования свойств и подбора катализаторов в силу объективных причин, связанных с незавершенностью теории катализа. Поэтому наряду с подходом, основанным на описании физико-химической сущности явлений катализа, получили широкое распространение формальные экспериментально-статистические методы описания сложных кибернетических систем. Предпосылки для развития экспериментально-статистических методов подбора катализаторов были созданы достигнутыми возможностями современной вычислительной техники, с одной стороны, а с другой стороны — накоплением значительного, хотя и не всегда строгого количественного экспериментального материала в области практического катализа. [c.67]

    Прежде чем применять меченые атомы для изучения отдельных реакций, необходимо сначала выяснить, не идут ли с участием этих атомов простые обменные реакции , которые могут исказить конечные результаты. В связи с этим было изучено большое количество обменных реакций как с неорганическими, так и с органическими веществами. В этой области к настоящему времени накоплен огромный экспериментальный материал. Коротко остановимся только на обменных реакциях водорода и кислорода и общем уравнении кинетики реакций изотопного обмена. [c.372]

    При выборе размера графика, разметке осей и установлении относительных масштабов следует руководствоваться степенью достоверности экспериментального материала. Желательно, чтобы точность отсчетов по графику была бы больше точности опытных данных. Мелкий масштаб приведет к утрате точности, очень крупный — к непроизводительной затрате времени на построение чертежа. [c.444]

    Часто возникает задача придать изученной опытным путем зависимости вид уравнения с тем, чтобы при помощи последнего производить различные вычисления. Такого рода уравнения называются эмпирическими формулами, так как в их основе лежит только экспериментальный материал. В эти формулы помимо изученных величин входят и коэффициенты, число которых зависит от точности опытных данных и от широты интервалов условий. [c.457]

    Таким образом, даже при сгорании простейшего углеводорода — метана идет целый комплекс различных элементарных актов, скорость протекания которых обусловливает состав образующихся продуктов в каждый данный момент и общую скорость протекания процесса в целом. Многочисленный экспериментальный материал позволяет считать представленный выше механизм окисления метана установленным, однако и здесь неясности еще остались. [c.54]

    Связь между структурой углеводородов и их антидетонационными свойствами установлена давно. В 1921 г. Рикардо определил толуоловые числа для 13 индивидуальных углеводородов и отметил некоторые закономерности влияния химического строения углеводородов на их детонационную стойкость. В 1934 г. были опубликованы данные об антидетонационных свойствах 171 индивидуального углеводорода, а в 1938 г. в американском Нефтяном институте была определена детонационная стойкость 325 углеводородов различного строения [1]. Накопленный к настоящему времени экспериментальный материал (табл. 20) позволяет выявить некоторые закономерности. [c.109]

    Н. И. Черножуков и С. Э. Крейн [40] на основании обширного экспериментального материала об исследованиях окисляемости искусственных смесей углеводородов пришли к выводу, что ароматические углеводороды, находясь в смеси с нафтеновыми, защищают последние от окисления, причем степень их влияния зависит от строения и концентрации в смеси. Тормозящее действие ароматических углеводородов авторы объясняют антиокислительными свойствами продуктов их окисления. [c.225]

    Если в области изучения первичных продуктов окисления и направлений их распада есть определенный экспериментальный материал и сформулированы основные закономерности, то процессы дальнейшего превращения продуктов окисления в смолистые вещества совершенно не исследованы. Данные об элементарном составе, величина йодного числа и наличие функциональных групп свидетельствуют о том, что смолистые вещества образуются в результате окислительной полимеризации и окислительной конденсации продуктов распада гидроперекисей с участием неуглеводородных примесей. Среди неуглеводородных составляющих бензинов наибольшее значение для процессов окисления имеют кислородные и сернистые соединения. [c.225]

    Здесь будут рассмотрены результаты исследования гидратации биологических молекул в разбавленных водных растворах, т. е. в условиях, в которых отсутствует взаимодействие между молекулами растворенного вещества. Обсуждение экспериментального материала будет сосредоточено на следующих основных вопросах. [c.46]

    При обсуждении экспериментальных данных, обосновывающих ту или иную закономерность, мы в первую очередь будем опираться на результаты, полученные акустическим [142] и денситометрическим методами, поскольку, с одной стороны, именно эти методы дали наибольшее количество экспериментального материала, а с другой — эти методы наиболее близки авторам по роду их занятий. [c.46]

    Очевидным условием существования жидких прослоек является хорощее смачивание твердой поверхности. Приведенное выражение (5.8) хорощо описывает процессы пластической деформации во многих гетерофазных системах различной химической природы [262—264]. Экспериментальный материал, полученный для увлажненных поликристаллов или порошков хлоридов натрия и калия [262], позволяет с уверенностью считать именно влагоперенос основным механизмом соляной тектоники. Это объясняет повышенную пластичность каменной соли и ее склонность образовывать в земной коре купола, шляпы, грибы и другие диапировые структуры. [c.91]

    Квантовомеханические оценки значеннй ки неизвестны, однако в любом случае не следует ожидать удовлетворительных оценок, поскольку пока нет никаких данных о геометрии переходного состояния. Не очень обширен и экспериментальный материал, нет ни одной работы по определению ки, известно лишь три источника по определению kis [51, 96, 971. Авторы использовали различную экспериментальную технику, однако результаты находятся между собой в неплохом согласии. Сопоставление данных [96, 971, полученных при комнатной температуре, с данными [511 для температуры (530—570)°С (рис. 29) позволяет подобрать для к л такое значение, которое для системы реакций 1—4, 6, 11—19 хорошо описывает эксперимент [51] /ей (2- 4)-10 . [c.281]

    Для особенно точных исследований Тиличеев рекомендует пользоваться методом удельных весов только для фракции 40—60°, а для высших — методом анилиновых точек, тоже средних, найденных на основании экспериментального материа-ла и приведенных в табл. 35. [c.162]

    К настоящему времени накоплен обширный теоретический и экспериментальный материал в области гетерогенного катализа. Приходится констатировать наличие большого числа теорий и подходов, по-разному объясняющих механизм протекания гетерогенно-каталитических процессов. Различные точки зрения на механизм поверхностных явлений, сопровождающих процессы гетерогенного катализа, порождают различные концепции и подходы при проектных расчетах и промышленной реализации процессов. В связи с этим возникает проблема структурной упорядоченности и освоения накопленных запасов информации в данной области знаний, разработки эффективных критериев сравнитель- [c.3]

    Учитывая накопленный экспериментальный материал, а также достигнутый на сегодня уровень теоретических обобщений, можно утверждать, что первый (качественный) аспект проблемы не вызывает принципиальных затруднений. В настоящее время в теории катализа установлен ряд общих механизмов этого явления, что открывает путь к научной классификации реакций и катализаторов по механизмам их действия. Это, в свою очередь, позволяет априори предсказывать, какая группа веществ может оказаться катализаторами для данной реакции. [c.57]

    К концу XVIII в. был накоплен большой экспериментальный материал, который необходимо было систематизировать в рамках единой теории. Создателем такой теории стал французский химик Антуан-Лоран Лавуазье (1743—1794). С самого начала своей деятельности на поприще химии Лавуазье понял важность точного измерения. Его первая значительная работа (1764 г.) была посвящена изучению состава минерального гипса. Нагревая этот минерал, Лавуазье удалял из него воду и определял количество полученной таким образом воды. Лавуазье принял сторону тех химиков, которые, подобно Блэку и Кавендишу, применяли измерение при изучении химических реакций. Однако Лавуазье использовал более систематический подход, что позволило ему доказать несостоятельность старых теорий, уже не только бесполезных, но и мешавших развитию химии. [c.45]

    Между тем процессы, определяющие структуру вязкого подслоя, не исчерпываются одной лишь нестационарностью. В первую очередь, здесь необходимо отметить глубокую связь между пульсационными полями скорости и давления, прямо следующую из уравнения (16,3). Столь же существенное значение имеют конве15тивные члены, входящие в систему (16.2), а также трехмерность пульса-циоииого движения в подслое. Непосредственное сравнение системы (16.2) с уравнением (16.4) показывает, что этими важными факторами обычно пренебрегают. Естественно, поэтому, что согласие упрощенных теорий с непрерывно растущим объемом накопленного эмпирического материала удается получить лишь за счет увеличения числа подгоночных параметров, вводимых в теоретические модели. На таком пути создания теории массопередачн можно в лучшем случае более или менее удачно описать имеющийся экспериментальный материал, по уж, по-вндимому, никак нельзя теоретически предсказать новые стороны изучаемого процесса. [c.176]

    НОСН2СН2СН2= — 15, С1СН2СНз = 20 и т. д. Из-за отсутствия достаточного экспериментального материала не удается установить, можно ли в случае радикалов пользоваться правилом аддитивности. Значения и S для радикалов можно вычислять по известным величинам для подобных соединений с точностью до 2 кал/моль- град при расчете S обязательно следует вносить поправку на сим.четрпю и электронную энтропию (см. сноску к табл. 1). Так, и 8° для NH3 и [c.580]

    Таким образом, принимая во внимание современные представления о напряженности средних циклов и полученный экспериментальный материал по их каталитическим преврашениям, можно сделать вывод, что внутримолекулярные реакции s- и Сб-дегидроциклизации с образованием бициклических углеводородов энергетически выгодны для 8—11-членных циклоалканов, поскольку при этом существенно уменьшается трансаннулярное напряжение. В случае конкурирующей реакции — реакции гидрогенолиза — главную роль играет, по-видимому, не напряженность в исходной молекуле, а напряжение, возникающее в переходном комплексе при адсорбции молекулы циклоалкана на поверхности катализатора [197]. Поэтому в общем случае нельзя считать выход н-алка-нов мерой реакционной способности циклоалканов. Это становится тем более очевидным, если учесть, что гидрогенолиз различных циклоалканов в присутствии Pt/ описывается разными кинетическими уравнениями [143, 151, 201, 202].  [c.159]

    НИЯ, весьма сложен. В связи с этим существует разрьш между нашими представлениями о свойствах тяжелых углеводородных модельных веществ и тем, что мы знаем о свойствах тяжелых углеводородов нефти в общем наши знания об углеводородах молекулярного веса от 300—1000 довольно ограничены. Каждый, кто применяет для анализа высокомолекулярных продуктов методы, основанные на свойствах синтетических углеводородов, должен быть знаком с этим фактом. Для восполнения пробела необходима большая работа, так как недостаток данных по индивидуальным компонентам становится серьезной помехой при изучении высококипящих нефтяных фракций. Если метод структурно-группового анализа применяется для изучения структурных элементов, которые не могут быть точро определены в нефтяных фракциях, например степень разветвления, то единственно возможным путем является изучение синтетических углеводородов. В этих случаях требуется большое число данных не только о самих чистых веществах, но также и об их смесях. Несмотря на то, что число данных все время увеличивается, как правило, не имеется достаточного экспериментального материала по высокомолекулярным соединениям. [c.369]

    Для того, чтобы оценить эту теорию, полезно нрел де рассмотреть обобщенный экспериментальный материал. В результате большой работы Гуга, Верью и Зуйдервега [27] были сделаны следующие выводы. [c.169]

    Медведев на основании большого экспериментального материала и имеющихся опубликованных данных о роли коллоидной растворимости мономеров в процессе полимеризации предложил его топографию в зависимости от природы изученных к тому времени мономеров [34, 35—37]. Под действием инициатора, растворимого только в мономере, независимо от растворимости последнего в воде, полимеризация начинается в мицеллах эмульгатора, содержащих и мономер и инициатор. То же относится и к мономерам, нерастворимым в воде (бутадиен, изопрен, стирол, винилхло-рид, винилиденхлорид и др.). При полимеризации мономеров, хорошо растворимых в воде (например, таких, как акрилонитрил), или частично растворимых в воде (метилакрилат, метилиетакря-лат и др.) процесс может начинаться в водной фазе в присутствии водорастворимых инициаторов процесса и частично, в зависимости от полярности мономера, в мицеллах эмульгатора. Для мономеров с высокой растворимостью в воде преобладающим является образование растущих полимерных цепей в водном растворе. [c.147]

    Применительно к битумному производству указывается, что слишком большой расход воздуха вызывает коалесценцию пузырьков и образование больших масс недиспергированного воздуха, который проходит через аппарат, не контактируя с жидкой фазой [И]. Прорыв воздуха происходит, вероятно, по центру колонны, так как известно [79], что восходящее движение жидкости (обусловленное движением газа, поскольку именно газовая фаза является движущей силой перемешивания) в барботажном суюе имеет место в средней адсти колонны (нисходящее — у стенок) и максимальная скорость подъема наблюдается, в общем, по оси колонны [79], хотя центр восходящего потока н блуждает в поперечном сечении [80]. Отмечалось, что уже в диапазоне нагрузок по воздуху 2,4— 3,9 м /(м -мин) увеличение нагрузки ухудшает степень использования кислорода воздуха [2, 81]. На практике это привело к ограничению нагрузки по воздуху до величины 4 м (м -мин) [74, 82]. Однако проведенный нами дополнительный анализ экспериментального материала показал, что заключение о снижении степени использования кислорода в указанных условиях является спорным, так как разница в результатах определения [c.58]

    Разработка метода основывалась не на литературных дан ных, так как при изучении окисления гудронов до битумов ис следователи обычно не описывают свойств исходной нефти Лишь в отдельных случаях одновременно упоминаются свойства нефти, гудрона и битумов такие работы [143] были учтены Для разработки метода использован экспериментальный матери ал, полученньш как в промышленных, так и в лабораторных ус ловнях. В последнем случае готовили остатки нефтей, выкипаю щие по ИТК выше примерно 350, 400, 450, 500°С. Окислением [c.96]

    На основании работ Ф. Фишера и Шрадера Г. Л. Стадников приходит к заключению, что . целлюлоза отмершего растения легко и быстро разрушается микроорганизмами без образования при этом гуминовых веществ п что, следовательно, .. . приведенный экспериментальный материал заставляет нас отказаться от прежнего взгляда на целлюлозу, как на материнское вещество ископаемых углей Мы не можем оспаривать столь авторитетное заключение, но считаем необходпмыл привести здесь результат исследовательской работы Н. Д. Штурма который сформулирован так .. . под влиянием аэробных целлюлозу разлагающих бактерий клетчатка превращается в слпзеподобное коллоидальное дисперсное вещество, которое обладает общими свойствами с гумусом почвы коллоидальностью, устойчивостью по отношению к воздействию микробов, содержанием органического азота (следствие автолиза) и растворимостью в разведенных щелочах . Противопоставлением результатов этих исследований мы и ограничимся. [c.330]

    Теория расчета реакторов с неподвижным слоем катализатора была далее усовершенствована Динсом и Лапидусом [10], а также Биком [11], В настоящее время эта теория уже довольно основательно разработана, однако имеются сомнения в надежности экспериментального. материала, лежащего в ее основе, и отсюда сомнения в возможности ее использования для расчета реакторов с неподвижным слое.м катализатора . Это за.мечание, в частности, относится к расчету распределения температур, учитывая очень сильную зависимость скорости реакции от температуры, Несомненно, большое влияние может оказать и неполнота наших представлений о механизме теплопроводности слоя и неточный выбор температурного коэффициента. Достаточно разработанная теория должна учитывать разность темпе- [c.58]

    На основании обширного экспериментального материала (438 измерений) Тонэс и Крамере вывели следующую формулу  [c.84]


Смотреть страницы где упоминается термин Экспериментальный материал: [c.239]    [c.165]    [c.97]    [c.271]    [c.303]    [c.232]   
Смотреть главы в:

Электронное строение и химическая связь в неорганической химии -> Экспериментальный материал

Гелий -> Экспериментальный материал




ПОИСК







© 2025 chem21.info Реклама на сайте