Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лук, число хромосом

Рис. 20.8. Картирование Х-хромосомы. В этом случае генетическая фаза двух или большего числа Х-сцеп-ленных локусов у дочери (Мать) устанавливается на основании данных о Х-сцепленных аллелях ее отца (Дед). Эту информацию в свою очередь используют для определения, какие из ее сыновей (Сыновья) получили рекомбинантную (К) и нерекомбинантную (NR) хромосому. В данном примере дед несет два рецессивных гена в локусах А и В Х-хромосомы, его дочь дигетерозиготна, а рассматриваемые аллели находятся у нее в цис-фазе. На Х-хромосоме показаны аллели локусов А и В, V-хромосома изображена в виде более короткой полоски. Рис. 20.8. <a href="/info/1413425">Картирование</a> Х-хромосомы. В этом случае генетическая фаза двух или большего <a href="/info/3579">числа</a> Х-сцеп-ленных локусов у дочери (Мать) устанавливается на основании данных о Х-сцепленных аллелях ее отца (Дед). Эту информацию в свою очередь используют для определения, какие из ее сыновей (Сыновья) получили рекомбинантную (К) и нерекомбинантную (NR) хромосому. В данном примере дед несет два рецессивных гена в локусах А и В Х-хромосомы, его дочь дигетерозиготна, а рассматриваемые аллели находятся у нее в цис-фазе. На Х-хромосоме показаны аллели локусов А и В, V-хромосома изображена в виде более короткой полоски.

    Основная цель экспериментов по клонированию генов, которые предполагается использовать в биотехнологии, — подбор условий для эффективной экспрессии в нужном организме-хозяине. К сожалению, сам факт встраивания того или иного гена в клонирующий вектор еще не означает, что этот ген будет экспрессирован. В то же время, чтобы получение коммерческого продукта было экономически оправданным, уровень его синтеза должен быть достаточно высоким. Для достижения эффективной экспрессии уже сконструировано много специфических векторов для этого проводились манипуляции с целым радом генетических элементов, контролирующих процессы транскрипции и трансляции, стабильность белков, секрецию продуктов из хозяйской клетки и т. д. Среди молекулярно-биологических свойств систем экспрессии наиболее важны следующие 1) тип промотора и терминатора транскрипции 2) прочность связывания мРНК с рибосомой 3) число копий клонированного гена и его локализация (в плазмиде или в хромосоме хозяйской клетки) 4) конечная локализация синтезируемого продукта 5) эффективность трансляции в организме хозяина 6) стабильность продукта в хозяйской клетке. [c.105]

    Элементы, ограниченные ДКП, способны также перемещаться, используя рекомбинационные механизмы. В результате гомологичной рекомбинации между ДКП элемент вырезается из хромосомы, но в составе генома сохраняется один ДКП, присутствие которого сможет обеспечить повторную интеграцию, например, какой-либо другой копии из числа представителей данного гетерогенного семейства (рис. 119, г). [c.229]

    Механизм, при помощи которого хромосомы распределяются в половых клетках (гаметах), например при формировании яйцеклетки и сперматозоидов, называется мейозом (гл. I, разд. В, 3). При образовании гамет число хромосом [c.265]

    Законная Р. г. наблюдается, напр., между двумя копиями к.-л. хромосомы. У эукариот (все организмы, за исключением бактерий и синезеленых водорослей) наиб, типичен обмен участками гомологичных хромосом в мейозе (деление клеток, в результате к-рого происходит уменьшение числа хромосом в дочерних клетках-осн. стадия образования половых клеток). Этот обмен может происходить между плотно конъюгированными хромосомами на ранних стадиях развития яйца или сперматозоида. Реже-законная Р. г. осуществляется при обычном делении клеток (с сохранением числа хромосом)-митозе. [c.229]

    Если учесть тот факт, что ДНК обнаружена в хромосомах всех клеток, опыты Эвери заставляли предположить, что все гены состоят из ДНК. А раз так, для Фрэнсиса это означало, что не белки сыграют роль Розеттского камня в раскрытии секрета жизни. Нет, именно ДНК даст нам ключ, который позволит узнать, каким образом гены определяют в числе прочих свойств цвет наших волос и глаз, а также, что весьма вероятно, степень наших умственных способностей и, может быть, даже нашу способность быть душой общества. [c.16]


    Важно уяснить, что именно основания, пуриновые или пиримидиновые, являются носителями генетической информации, подобно тому как боковые цепи аминокислот определяют химические и функциональные свойства аминокислоты. Носитель наследственной информации — молекула ДНК — организована в клетке в структурные единицы — гены. Эти последние в свою очередь локализованы в особых структурах — хромосомах, которые находятся в ядре животных или растительных клеток. Именно ген содержит информацию, определяющую специфический признак цвет глаз и волос, рост, пол и т. д. Однако для описания на молекулярном уровне ген — довольно сложное образование, так как число молекулярных стадий при реализации конкретного признака может быть весьма велико. Отметим, что любой генетический признак реализуется с помощью белкового синтеза (структурного белка либо фермента), и введем понятие более простого элемента — цистрона. Цистрон определяют как часть ДНК, которая несет генетическую информацию (кодирует) о синтезе лищь одной полипептидной цепи. Хромосома содержит много сотен цистронов. Все количество ДНК, содержащееся в клетке, называется геномом. [c.108]

    Частичный перенос хромосомы из мужской клетки приводит к тому, что Р -клетка становится частично диплоидной (мерозигота), т. е. содержащей двойной набор многих генов. В такой частично диплоидной клетке между двумя хромосомами происходит обмен генетической информацией (генетическая рекомбинация) (рис. 15-2). Химические реакции, лежащие в основе этого процесса, имеющего важное значение для всех организмов, размножающихся половым путем, мы рассмотрим в разд. Ж- В конечном счете рекомбинационный процесс приводит к тому, что дочерние клетки, образовавшиеся при последующем делении, содержат только одну хромосому с обычным числом генов. Однако некоторые гены попадают в эту хромосому от каждого из родительских штаммов. Таким образом, может случиться, что клетка Р мутантного штамма, неспособная расти на среде без определенных питательных добавок, получит ген из мужской клетки, который позволит ей расти на минимальной среде. Хотя число таких рекомбинантных бактерий мало, тем не менее их легко можно отобрать из очень большого числа исходна смешанных мутантных бактерий. [c.191]

    Триптофансинтетаза (стр. 141) состоит из двух субъединиц А и В (или а и ), первая из которых содержит всего лишь 268 аминокислот. Тонкую структуру гена А удалось картировать следующим образом. Было выделено большое число мутантных бактерий, неспособных расти на среде, не содержаш,ей триптофана (ауксотрофы по триптофану). Генетические скрещивания проводились с помощью специального трансдуцирующего бактериофага Pike [134]. В процессе размножения в чувствительных к ним бактериях трансдуцирующие бактериофаги иногда включают в собственную ДНК часть бактериальной хромосомы. В дальнейшем, когда такой фаг заражает другие бактерии, часть его генетической информации может переноситься в результате рекомбинации 3 хромосомы бактерий, переживших инфекцию. Используя серии мутантов с делециями аналогично тому, как это было сделано при картировании гена гЛ, удалось разделить ген А на ряд участков, а исследование частоты рекомбинаций позволило осуществить точное картирование. [c.251]

    Несмотря на то что сейчас выяснены лишь некоторые ключевые моменты тех химических процессов, которые лежат в основе всех этих явлений, использование температурочувствительных мутантов и тестов на комплементацию поможет установить суммарное число генов, принимающих участие в этих процессах, а также локализацию этих генов в хромосоме Е. oli. В ряде случаев это может способствовать более полному пониманию биологического явления. [c.255]

    Эффективный метод исследования основан на существовании в бактериях небольших генетических элементов, существующих вне хромосомы. Об одной группе таких элементов (или факторов), получившей название F-факторов, уже шла речь выше (разд. А, 1,г). Эти элементы, представляющие собой небольшие кольцевые молекулы ДНК, являются иредсЕавитеЛями 1 руш1ыд включающей большое число подобны х аген- [c.256]

    Большинство клеток высших организмов обычно имеет диплоидный набор хромосом, однако в некоторых из них набор хромосом может быть удвоен или увеличен в еще большее число раз. Клетка, в которой число хромосом увеличено по сравнению с диплоидным в два раза, называется тетраплоидной, а в большее число раз — полиплоидной. Селекционерам удалось получить много разновидностей тетраплоидных цветковых растений, размеры которых, как правило, больше диплоидных, Большинство клеток нашего организма также диплоидные, однако и у нас имеются полиплоидные клетки. Некоторые из них, например, обнаруживаются в печени. Наиболее выразительным примером увеличения содержания ДНК в клетке могут служить гигантские политенные хромосомы личинки двукрылых. ДНК клеток слюнных желез и некоторых других частей этих личинок может удваиваться без деления клетки приблизительно в 13 раз, причем количество ДНК может возрастать при этом в несколько тысяч раз (например, в 2 раз). Сусперсппрализованные удвоенные молекулы ДНК располагаются ря-до.м друг с другом в более вытянутой форме, чем в обычных хромосомах. Общая длина четырех гигантских хромосом дрозофилы составляет приблизительно 2 мм, тогда как в обычной диплоидной клетке их длина равна 7,5 мкм. Гигантские хромосомы имеют поперечнополосатую структуру по всей длине хромосомы можно видеть приблизительно 3000 поперечных дисков. Поскольку было установлено наличие корреляции между видимыми изменениями дисков I и коакретиыми [c.267]

    Скорость репликации в этих ядрах оказалась равной приблизительно 300 000 оснований в одну секунду, причем, согласно данным, полученным в этой же работе, репликационные внлки в хромосомах животных не могут двигаться быстрее, чем со скоростью - 50 оснований в секунду. Таким образом, можно было ожидать, что в хромосоме имеется как минимум 6000 вилок или одна вилка на 10 000 оснований. И такое большое число вилок в действительности удалось обнаружить [191]. Вилки появляются попарно, причем при внимательном изучении оказалось,, что во многих коротких участках содержится одноцепочечная ДНК, т. е. как будто бы одна цепь в вилке реплицируется быстрее другой. Строение одноцепочечных областей между двумя образуюш,ими пары вилками указывает на двустороннюю направленность репликации (рис. 15-29). Репликация в случае Ba illus subtilis также протекает в двух направлениях, однако вилки перемещаются в двух направлениях с разной скоростью [192]. Репликация ДНК фагов X и Т7 также протекает в двух, направлениях [193], тогда как митохондриальная ДНК мыши реплицируется лишь в одном направлении [194]. [c.274]


    Геном высших организмов состоит из определенного числа отдельных хромосом, каждая из которых содержит, по-видимому, одну двухцепочечную молекулу ДНК. Эта молекула ДНК тесно связана с другими компонентами, в состав которых входит примерно 75% белка и 10% РНК (гл. 1, разд. Б,2). До недавнего времени мало что можно было сказать о том, как устроены хромосомы. Однако известно, что в профазе митоза или мейоза вытянутые хромосы иногда выглядят как нитки бус. Маленькие, богатые ДНК бусинки, известные под названием хромомер, подобно дискам политенных хромосом дрозофилы (разд. Г, 9, в), можно рассматривать как своего рода единицы генетической информации. Их существование дает основание думать, что ДНК в хромосоме каким-то образом разделена на отдельные единицы, возможно, аналогично оперонам бактерий. [c.296]

    Какие еще белки кроме гистонов обнаруживаются в клеточных ядрах Методом электрофореза в полиакриламидном геле было установлено, что в ядрах клеток НеЬа содержится около 450 компонентов, большинство из которых присутствует в небольших количествах (<10 000 молекул в расчете на одну клетку) и не обнаруживается в цитоплазме [302]. К наиболее кислым белкам относится большое число ферментов, включая РНК-полимфазу. Кроме того, в ядрах содержатся 1) определенные репрессоры генов, в основном не идентифицированные, 2) бел ки, связывающие гормоны, и 3) многие другие белки [303]. Наряду с ядерными белками, которым уделяется обычно основное внимание, определенную роль в регуляции фенотипического выражения генов играет также мало исследованный класс небольших ядерных РНК. Молекулы этой РНК длиной от 65 до 200 нуклеотидов могут стимулировать транскрипцию специфических генов, связываясь с комплементарными участками ДНК. Таким образом, информация, транскрибированная с одного участка хромосомы, может оказывать влияние на процессы, протекающие на другом участке или на другой хромосоме [303а]. [c.304]

    Путем последовательных митотических делений из одной оплодотворенной яйцеклетки формируется взрослый организм. Для формирования организма человека достаточно всего 40—50 последовательных митозов. Однако образование гамет (половых клеток), имеющих гаплоидный набор хромосом, осуществляется путем мейоза — специального процесса, в ходе которого число хромосом делится надвое. При мейозе одна хромосома из каждой гомологичной пары, содержащейся в диплоидной клетке, переходит в одну из образующихся гамет. В организме, подобном As aris, который содержит единственную пару хромосом, гамета получает хромосому либо от отцовского организма, либо от материнского, но не от обоих сразу. В организмах, имеющих несколько пар хромосом, хромосомы при мейозе распределяются случайным образом, так что в каждой гамете имеются как материнские, так и отцовские хромосомы. [c.40]

    Для своей репликации плазмиды используют репликативную машину клетки-хозяина, однако репликация плазмид происходит независимо от хромосомы. Каждая плазмида является самостоятельным репликоном, сама контролирует собственную репликацию и поддерживается в клетке в определенном, характерном для нее числе копий. Для характеристики плазмидных репликонов их принято разбивать на группы несовместимости. Дело а том, что если сходство репликонов столь ве тико, что система реглляции репликации (или систе.ма сегрегации молекул ДНК при делении клетки) не может различить их между собой, то две плазмиды оказываются несовместимыми в одной клетке после роста клеток в неселективных [c.110]

    Векторные системы, способные интегрировать крупные вставки (>100 т. п. н.), имеют большую ценность при анализе сложных эукариотических геномов. Без таких векторов не обойтись, например, при картировании генома человека или при идентификации отдельных генов. В отличие от библиотек с небольшими вставками, в геномной библиотеке с крупными вставками скорее всего будет представлен весь генетический материал организма. Кроме того, в этом случае уменьшается число клонов, которые нужно поддерживать, и увеличивается вероятность того, что каждый из генов будет присутствовать в своем клоне. Для клонирования фрагментов ДНК размером от 100 до 300 т. п. н. был сконструирован низкокопийный плазмидный вектор на основе бактериофага Р1 — химерная конструкция, называемая искусственной хромосомой на основе фага Р1. Был создан также очень стабильный вектор, способный интегрировать вставки длиной от 150 до 300 т. п. н., на основе Р-плазмиды (F-фактора, или фактора фертильности) Е. соИ, которая представлена в клетке одной или двумя копиями, с селекционной системой la Z векторов pU . Эта конструк- [c.76]

    Чтобы увеличить число копий гена а-амилазы, локализованных в хромосоме В. subtilis, ис- [c.124]

    Для повышения продукции глюкоамилазы в хромосомную ДНК грибов А. niger встроили несколько копий ее гена. Оказалось, что активность глюкоамилазы не коррелирует с числом копий гена, но сильно зависит от того, в какой участок хромосомы они были встроены. Таким образом, простого увеличения числа копий гена [c.290]

    По геному человека равномерно распределены примерно 100 ООО блоков динуклеотидных повторов A/GT [(СА) (GT)] (рис. 20.13), содержащих от 1 до 40 повторяющихся A/GT-эле-ментов. Любой такой блок, локализованный в определенном участке хромосомы, передается из поколения в поколение с сохранением числа повторяющихся элементов. Для СА/ОТ-повто-ра принято обозначение (СА) , где п - число СА-повторов. В геноме человека встречаются и другие динуклеотидные повторы [например, (АТ),, и т. д.], а также три-[(АТС),, и т. д.] и тет-рануклеотидные [(AT G),, и т. д.]. [c.454]


Смотреть страницы где упоминается термин Лук, число хромосом: [c.356]    [c.74]    [c.110]    [c.165]    [c.184]    [c.186]    [c.253]    [c.259]    [c.267]    [c.269]    [c.300]    [c.301]    [c.553]    [c.252]    [c.389]    [c.18]    [c.41]    [c.65]    [c.165]    [c.184]    [c.186]    [c.27]    [c.31]    [c.439]    [c.444]    [c.446]    [c.448]    [c.453]    [c.454]   
Биохимия Том 3 (1980) -- [ c.39 ]




ПОИСК





Смотрите так же термины и статьи:

Хромосома хромосомы

Хромосомы



© 2025 chem21.info Реклама на сайте