Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Регуляторные механизмы, AMP

    Известно, что бактериальная клетка не допускает избыточной продукции рибосомных белков. Практически их синтезируется столько, сколько требуется для сборки рибосом, в соответствии с количеством образующейся рибосомной РНК, и сколько-нибудь серьезного избытка свободных рибосомных белков в нормальной клетке не бывает. Поразительно одинаковый и координированный уровень продукции всех 52 рибосомных белков достигается несмотря на то, что их гены вовсе не организованы в единый регулируемый блок, а представлены независимыми приблизительно 16 оперонами, распределенными по геному клетки. Оказалось, что координированно одинаковая продукция практически всех рибосомных белков и отсутствие их избыточной продукции поддерживаются регуляторным механизмом, обеспечивающим репрессию трансляции избытком белка (трансляционная регуляция по принципу обратной связи). [c.237]


    Каждая клетка организма представляет сложнейшую систему различных веществ (систему фаз), существенно влияющую на направление и скорость диффузии различных веществ. Изменение функционального состояния клетки, тесно связанное с общими регуляторными механизмами живых организмов, сопровождается изменением состояния фаз, их объемов, величины поверхности раздела между ними. Все это приводит к определенным изменениям в диффузии различных веществ. Интенсивность обменных реакций также оказывает регулирующее влияние на диффузию. Повышение обменных процессов усиливает использование диффундирующих реагентов и ведет к накоплению продуктов реакций, что, в свою очередь, повышает градиенты их концентраций и увеличивает диффузию. Понижение интенсивности обменных процессов действует в обратном направлении. [c.22]

    Ферментный контроль обеспечивает регуляцию большинства физиологических функций организма. Ингибиторы ферментов, как правило, или сильные яды, или сильные лекарственно активные вещества. Например, ацетилсалициловая кислота, или аспирин, — это эффективный ингибитор ферментов, которые синтезирует простагландины — весьма важные биологические регуляторы. Непосредственно сами ферменты находят в настоящее время применение в терапии некоторых заболеваний 3) принципиально важные работы в настоящее время ведутся в области выяснения молекулярной природы иммунного ответа. В процессе эволюции наш организм приобрел способность бороться с проникающими в него чужеродными клетками, чужеродными белками. Иммунология и иммунохимия в настоящее время переживают бурный расцвет, и мы являемся свидетелями появления новых вакцин, иммуностимуляторов, иммунодепрессантов. Регуляция иммунной реакции —один из наиболее ярких примеров достижений биологической химии в медицине 4) все большее внимание в последние годы начинает привлекать рецепторный уровень регуляции физиологических ответов организма. Если предшествующие этапы внедрения химии в биологию и медицину были связаны в основном со случайным поиском новых веществ, то настоящее время характеризуется все более глубоким проникновением в регуляторные химические механизмы физиологических ответов клетки. В различных клетках нашего организма можно вызвать те или иные ответы путем воздействия на специфические клеточные рецепторы, понимающие и чувствующие химические сигналы, заданные структурой вводимого соединения. Это высокоэффективные регуляторные механизмы, позволяющие в ряде случаев весьма тонко повлиять на метаболические процессы в клетке. Пока мало известно о структуре и природе рецепторов. Это определяется в основном тем, что клетка содержит весьма мало рецепторов. Однако объем химической информации о клеточных рецепторах непрерывно растет, и мы являемся свидетелями появления новых лекарственных соединений, созданных на основе этой информации. [c.199]


    Биологов уже с давних пор изумляла способность живых организмов поддерживать постоянным состав внутренней среды вопреки резким изменениям внешних условий. Например, pH нашей крови всегда равен 7,40 0,05. Концентрация глюкозы в крови может кратковременно возрасти после еды, но в целом это строго постоянная величина (5 мМ), То же можно сказать о содержании большинства других компонентов жидкостей тела и внутриклеточной среды. Этот феномен, называемый гомеостазом, обусловлен деятельностью сложной системы регуляторных механизмов. [c.63]

    Метаболит может регулировать не только собственный биосинтез по принципу отрицательной обратной связи, но и синтез какого-либо другого соединения, к образованию которого ведет совершенно иной путь [66]. Поразительным примером такого рода является синтез АТР и GTP из общего предшественника — инозин-5 -фосфата (IMP рис. 6-17). Как АТР, так и GTP необходимы клеткам в основном для синтеза РНК и ДНК, поэтому неудивительно, что их синтез сбалансирован при помощи специальных регуляторных механизмов. Из рис. 6-17 видно, что синтез АМР из IMP требует непосредственного участия <ЗТР, а в синтезе GMP принимает участие АТР. Биосинтез как АМР, так и GMP ингибируется по принципу отрицательной обратной связи. Кроме того, существуют специальные механизмы для гидролиза избыточных количеств АТР и GTP (внешние петли на рис. 6-17). Однако гидролиз АМР ингибируется GTP, а восстановительное дезаминирование GMP ингибируется АТР. [c.74]

    II периферических регуляторных механизмов. [c.224]

    К классу производных алифатических кислот принадлежат два витамина - F и В 5 Группа природных веществ, носящих с 1912 г. название "витамины", объединяет ряд метаболитов, которые образуются главным образом в растениях и микроорганизмах и участвуют в виде комплексов с белками во многих важнейших биохимических реакциях в качестве биокатализаторов или переносчиков функциональных фуппировок Важно подчеркнуть, что организм человека и животных их не синтезирует самостоятельно, хотя и остро нуждается в этих жизненно важных биорегуляторах (веществах, действующих на регуляторные механизмы) Недостаток витаминов и рационе признается важной причиной роста заболеваемости и смертности людей В этой связи во всех странах мира создаются программы витами- [c.33]

    Характерная особенность регуляторных механизмов, действующих на уровнях транскрипции и трансляции, состоит в том, что они являются относительно медленными время ответной реакции равно часам, а иногда и дням. [c.66]

    Несмотря, однако, на эту сложность, существование некоторых регуляторных механизмов было четко доказано. Выше уже были рассмотрены два типа регуляции, в основе которых лежит принцип обратной связи. Один из них используется при синтезе ферментов и состоит в репрессии этого синтеза избытком фермента (гл. 6, разд. Е,2), а другой обеспечивает быстрый контроль активности фермента путем его ингибирования (гл. 6, разд. Е, 4). Когда имеет место постоянная скорость роста клеток, регуляция по типу обратной связи может оказаться достаточной для того, чтобы обеспечить гармоничное и пропорциональное увеличение концентрации всех составных частей. Такая ситуация наблюдается, например, на логарифмической стадии роста бактерий (гл. 6, разд. В) или в случае быстро растущих эмбрионов животных, когда все необходимые для них питательные вещества поступают из относительно неизменной материнской крови. [c.503]

    Существуют относительно быстрые регуляторные механизмы, которые направлены непосредственно на ферменты. Так, практически неактивный фермент может превращаться в активную форму путем ковалентной модификации [72] >. Иногда ковалентная модификация, напротив, приводит к инактивации фермента. Так, активности двух ферментов, участвующих в метаболизме гликогена — гликогенфосфорилазы и гликогенсинтетазы, — регулируются с помощью фосфорилирования (переноса концевой фосфатной группы от АТР на определенный остаток серина см. гл. 11, разд. Е, 3)- >. Прн этом фермент, катализирующий распад гликогена (фосфорилаэа Ь), превращается в более активную форму (фосфорилазу а), а фермент, катализирующий синтез гликогена, — в неактивную форму. В результате направление клеточного метаболизма изменяется от запасания полисахарида (гликогена) к его деградации, что обеспечивает клетку энергией. Дефосфорилирование обоих ферментов катализируется фосфатазой, переводящей ферменты в исходное состояние (рис. 6-15). Как фермент, катализирующий модификацию (киназа гл. 7, разд. Д, 6), так и фосфатаза регулируются по аллостерическому механизму. Эти довольно сложные механизмы способны за очень короткий промежуток времени обеспечить клетку модифицированным ферментом. [c.69]

    Другая важная сторона метаболизма - неразрывность процессов катаболизма (распада) и анаболизма (биосинтеза) и их регуляция на всех уровнях -от молекулярного до генетического, от модификации субстрата или фермента до сложных регуляторных механизмов, которые функционируют с помощью гормонов, рецепторов, медиаторов, посредников. [c.118]

    Регуляторные механизмы клетки Пер, с аигл./Под ред. И. Б. Збарского. М. Мир, 1964. С 111-133 150-163 164-195 278-306 477-497 [c.27]


    Нарушения, вызванные внесением избыточных количеств экзогенных субстратов, могут быть очень глубокими, так как нормальная биологическая система очень строго регулируется сложными механизмами обратной связи. В основном эти нарушения связаны с возможностью включения меченого соединения в циклы метаболизма, не реализующиеся в обычных условиях. Это происходит либо потому, что уже имеющийся фермент действует на этот субстрат только при достаточно высокой концентрации последнего, либо вследствие образования в системе нового фермента, вызванного введением такого субстрата. Точно так же избыток меченого соединения может ингибировать синтез и(или) промо-тировать конкурентные пути выведения эндогенного субстрата с помощью обычных регуляторных механизмов. Эффекты такого рода заслуживают особого изучения. В случае хорошо известных биологических систем их можно учитывать и даже выгодно использовать, но в общем случае они являются скорее источником серьезных ошибок. Их можно свести к минимуму посредством тщательного планирования эксперимента, в частности добавляя предшественник (и выделяя продукт превращения) в самые оптимальные моменты, а при необходимости вводя предшественник не в один прием, а постепенно в течение всего эксперимента. [c.468]

    Надо отметить, что регуляторные механизмы индукции и репрессии действуют сравнительно медленно. [c.49]

Рис. 22. Схема регуляторного механизма процесса репрессии I — без конечного продукта, 77 — в присутствии конечного продукта Рис. 22. Схема <a href="/info/1320858">регуляторного механизма</a> процесса репрессии I — без <a href="/info/17660">конечного продукта</a>, 77 — в присутствии конечного продукта
    В метаболизме клетки при биосинтезе отдельных компонентов обычно одновременно действует несколько регуляторных механизмов. [c.51]

    Другие типы регуляции активности ферментов. Абсолютное количество присутствующего в клетке фермента регулируется временем его синтеза и распада. К регуляторным механизмам могут быть отнесены также конкуренция ферментов за общий субстрат, выключение активности одного из изоферментов (у множественных форм ферментов), влияние концентра- [c.156]

    Для большинства эукариотических клеток, как и клеток прокариот, стадия инициации транскрипции является основной, главной регуляторной точкой экспрессии активности генов. Тем не менее имеются существенные различия во-первых, место процессов транскрипции (в ядре) и трансляции (в цитоплазме) во-вторых, активирование транскрипции у эукариот связано с множеством сложных изменений структуры хроматина в транскрибируемой области в-третьих, в эукариотических клетках превалируют положительные регуляторные механизмы над отрицательными. [c.538]

    Глаз — саморегулируемая система. Ее оптические недостатки в значительной мере компенсируются регуляторными механизмами, оптимизирующими работу глаза. Важнейшими пз них являются фокусировка изображения на сетчатке и регуляция количества света, попадающего на сетчатку. [c.462]

    Преимущество гипотезы селективной стабилизации перед теорией програм.мирования заключается в том, что в первом случае для образования 10 синапсов требуется меньшее число генов целые группы нейронов могут кодироваться одним геном и их рост до органа-мишени контролироваться одним общим регуляторным механизмом. Такой эпигенетический механизм мог бы производить тонкую настройку связей системы нейронной сети. [c.330]

    Эффект Доннана (т. е. нерав1юмерное распределение электролитов между клетками и омывающей их жидкостью) оказывает большое влияние на жизнедеятельность клеток, на величину биопотенциалов и т. п. Однако в целостном организме на распределение ионов влияет ряд физиологических регуляторных механизмов, процессы обмена веществ и т. п. Поэтому в живом организме эффект Доннана является лишь одной из причин сложных процессов возникновения осмотического давления, электрических явлений, распределения электролитов и пр. [c.196]

    Грен Э. Л. Регуляторные механизмы репликации РНК-содержащих бактериофагов.— Рига Зинатне, 1974. [c.332]

    Мы полагаем, что прп отравлении ядами конечный ypoBetib функционирования сердца зависит главным образом от того, насколько нарушено взаимодействие центральных экстракардиальны.ч и периферических (внутрисердечных) регуляторных механизмов. [c.113]

    Теоретическая направленность занятий в данном разделе практикума по биохимии связана с анализом основных высокоэффективных механизмов регуляции активности ферментов, обсуждаемых в настоящее время в учебной литературе и на страницах известных биохимических журналов. К таким механизмам относятся аллостерический механизм контроля активности, реализующийся на уровне существования множественных форм ферментов механизм усиления, связанный с функционированием субстратных циклов адсорбционный механизм контроля, реализующийся при обратимом взаимодействии ферментов с биологическими мембранами регуляторный механизм с участием вторичных мессенжеров (цАМФ, С +) и универсальных модуляторов белковой природы (кальмодулин). [c.329]

    ДНК, не влияя при этом на репликацию ДНК в ядре. Этот эффект сходен с описанным выше действием этидиумбромида на митохондриальную ДНК- Вместе с тем клетки hlamydomonas, обработанные эти-диумбромидом, способны в дальнейшем восстанавливать содержание ДНК в хлоропластах. При интерпретации этих данных было высказана предположение о существовании исходных копий хлоропластной ДНК в специально защищенных участках. При такой интерпретации необходимо учитывать также данные, свидетельствующие о том, что, хотя репликация ДНК в ядре и в других органеллах происходит в разные периоды клеточного цикла, соотношение между содержанием ДНК в ядре и органеллах поддерживается на постоянном уровне. Должен, по-видимому, существовать какой-то регуляторный механизм, обусловливающий сопряжение процессов репликации ДНК в ядре, митохондриях и хлоропластах [184]. [c.271]

    Состав и соотношение форм И. (спектр И.) изменяется в зависимости от их локализации в органах и тканях организмов одного вида и даже в разных субклеточных органеллах одной и той же клетки. На спектр И. оказывает влияние разное физиол. состояние организма и патологич. процессы, происходящие в нем. Поскольку И. различаются по свои.м св-вам (оптимуму pH, активации ионами, по сродству к субстратам, ингибиторам, активаторам, кофакторам), то характер их распределения отражает регуляторные механизмы, контролирующие метаболизм. Так, напр., лактатдегидрогеназа представлена в организме человека и животных пятью формами, каждая из к-рых представляет собой тетрамер, состоящий из субъединиц двух типов (а и Р) в разных соотношениях. В сердце и печени представлена в осн. форма 04, а в мышцах-Р . Первая ингибируется избытком пировиноградной к-ты и поэтому преобладает в органах с аэробным типом метаболизма, вторая не ингибируется избытком этой к-ты и преобладает в мышцах с высоким урювнем гликолиза. О важной роли И. в тонкой регуляции метаболич. процессов свидетельствует также изменение их спектра под влиянием разл. воздействий и физиол. состояний (охлаждение, гипоксия, денервация и др.). [c.202]

    Работа всех регуляторных механизмов клетки определяется в конечном счете генами и их продуктами. Внутри клетки происходит непрерывная транскрипция многих генов, хотя часть генома может не проявляться. К факторам, определяющим скорость синтеза ферментов на рибосомах в цитоплазме, относятся как скорость транскрипции, так и скорость деградации молекул мРНК. [c.65]

    Характерной особенностью регуляторных механизмов, зависимых от обратимой модификации белков, является существование специальных ферментов, возвращающих модифицированные белки в их исходное состояние покоя циклический АМР гидролизуется фосфодиэстеразой до АМР, а все образующиеся фосфорилированные белки подвергаются гидролизу под действием фосфопротеинфосфатазы, в результате которого происходит удаление фосфатных групп [50]. Эти релаксационные реакции обозначены на рис. 11-10 пунктирными линиями. Действие фосфатаз также, несомненно, подвержено регуляции, однако о соответствующих механизмах нам мало что известно. Инсулин же при его введении в организм крыс, больных диабетом, стимулирует, вероятно, непрямым путем быстрое превращение неактивной формы (D-формы) гликогенсинтетазы печени в активную (1-форму) [51]. [c.509]

    Наблюдаются и такие цепи катаболических реакций, когда субстрат действует как индуктор фермента только для первой реакции, затем первый промежуточный продукт А индуцирует биосинтез следующего фермента и т. д. Использование регуляторного механизма индукции ферментов дает возможность значительно увеличить синтез этих ферментов. При длительном выращивании культуры Е. oii на среде с лактозой содержание Р-галактозидазы увеличивается в 1000 раз. После индукции количество этого фермента в клетке достигает 3% общего содержания белков. Аналогичная картина наблюдается при работе с продуцентом амилазы — плесневыми грибами рода Aspergillus. [c.47]

    Регуляторный механизм репрессии конечным продуктом показан на рис. 22. Из него видно, что ген-регулятор образует апорепрессор, превращающийся в репрессор только после связи с конечным продуктом реакций — корепрессором. Только в таком связанном виде репрессор блокирует ген-оператор и прекращает синтез фермента. [c.48]

    Одним из уникальных свойств живых организмов является удивительная их способность к сохранению сбалансированности катаболических (биодегра-дативных) и анаболических (биосинтетических) процессов. При этом в клетках одновременно совершаются процессы синтеза, распада и взаимопревращения сотен и тысяч разнообразных веществ, которые в свою очередь регулируются множеством механизмов, обеспечивающих постоянство внутренней среды организма. Некоторые из этих регуляторных механизмов, среди которых важная роль принадлежит механизмам регуляции синтеза и каталитической активности ферментов, будут рассмотрены далее. [c.152]

    Следует подчеркнуть важную роль кетоновых тел в поддержании энергетического баланса. Кетоновые тела —поставщики топлгша для мышц, почек и действуют, возможно, как часть регуляторного механизма с обратной связью, предотвращая чрезвычайную мобилизацию жирных кислот из жировых депо. Печень в этом смысле является исключением, она не использует кетоновые тела в качестве энергетического материала. [c.380]

    У животных меланины обычно содержатся в особых органеллах и специфических клетках, так что, скорее всего, регуляторный механизм контролирует процесс дифференциации и образования этих клеток и органелл, а не биосинтез меланинов непосредственно. Конечно, в основном синтез и отложение меланинов, обусловливающие внешнюю окраску или характер ее распределения у животного, находятся под генетическим контролем. Так, люди негроидной расы имеют черную кожу вне зависимости от окружающей среды. Однако факторы среды и сезонные изменения также могут быть чрезвычайно важными. Известно, например, несколько примеров стимуляции меланогенеза низкими температурами или такими факторами, как влажность и роение (у пчел). [c.275]

    В опытах с A t. levoris штамм 26/1 И. И. Белоусова и др. (19676) наблюдали, что по мере развития этого продуцента в его мицелии накапливаются вещества, обеспечивающие переключение обмена на образование антибиотика. Влияющие на регуляторные механизмы метаболиты частично переходят из [c.165]


Смотреть страницы где упоминается термин Регуляторные механизмы, AMP: [c.73]    [c.37]    [c.227]    [c.477]    [c.512]    [c.112]    [c.245]    [c.622]    [c.698]    [c.47]    [c.7]    [c.156]    [c.300]    [c.477]    [c.512]   
Генетика человека Т.3 (1990) -- [ c.130 ]




ПОИСК







© 2025 chem21.info Реклама на сайте