Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки секреция

    Вообще аспекты участия СТГ вследствие его анаболического действия весьма многообразны он способствует транспорту аминокислот в клетки, стимулирует усвоение жирных кислот, биосинтез белков. СТГ обладает также диабетогенным действием, повышенная его секреция может привести к сахарной болезни. Это объясняется торможением периферийного обмена глюкозы. [c.244]


    В эукариотических клетках относительное содержание (концентрация) рибосом меньше, и их количество очень сильно варьирует в зависимости от белоксинтезирующей активности соответствующей ткани или отдельной клетки. Основная масса рибосом локализована в цитоплазме (рис. 29). В клетках с интенсивной секрецией белка и развитой сетью эндоплазматического ретикулума значительная часть цитоплазматических рибосом прикреплена к его мембране на поверхности, обращенной к цитоплазматическому матриксу в некоторых частях ретикулума их может быть много, в то время [c.50]

    Таким образом, последовательность событий может быть представлена следующим образом (рис. 129). Синтез белка, предназначенного для секреции или для трансмембранной установки, начинается на сво-свободных рибосомах. В процессе наращивания первых 30-40 аминокислотных остатков пептид еще не высовывается из рибосом. Далее, в случае секретируемых или трансмембранных белков, из рибосомы начинает показываться гидрофобная сигнальная последовательность. Когда сигнальная последовательность, торчащая из рибосомы, достигает длины 15—30 аминокислотных остатков, т. е. когда растущий пептид в целом достигает длины около [c.284]

    Гормональная функция. Обмен веществ в организме регулируется разнообразными механизмами. В этой регуляции важное место занимают гормоны, синтезируемые не только в железах внутренней секреции, но и во многих других клетках организма (см. далее). Ряд гормонов представлен белками или полипептидами, например гормоны гипофиза, поджелудочной железы и др. Некоторые гормоны являются производными аминокислот. [c.21]

    Биологическое действие гормонов щитовидной железы распространяется на множество физиологических функций организма. В частности, гормоны регулируют скорость основного обмена, рост и дифференцировку тканей, обмен белков, углеводов и липидов, водно-электролитный обмен, деятельность ЦНС, пищеварительного тракта, гемопоэз, функцию сердечнососудистой системы, потребность в витаминах, сопротивляемость организма инфекциям и др. Точкой приложения действия тиреоидных гормонов, как и всех стероидов (см. далее), считается генетический аппарат. Специфические рецепторы—белки —обеспечивают транспорт тиреоидных гормонов в ядро и взаимодействие со структурными генами, в результате чего увеличивается синтез ферментов, регулирующих скорость окислительновосстановительных процессов. Естественно поэтому, что недостаточная функция щитовидной железы (гипофункция) или, наоборот, повышенная секреция гормонов (гиперфункция) вызывает глубокие расстройства физиологического статуса организма. [c.266]


    Биологическая роль андрогенов в мужском организме в основном связана с дифференцировкой и функционированием репродуктивной системы, причем в отличие от эстрогенов андрогенные гормоны уже в эмбриональном периоде оказывают существенное влияние на дифференцировку мужских половых желез, а также других тканей, определяя характер секреции гонадотропных гормонов у взрослых. Во взрослом организме андрогены регулируют развитие мужских вторичных половых признаков, сперматогенез в семенниках и т.д. Следует отметить, что андрогены оказывают значительное анаболическое действие, выражающееся в стимуляции синтеза белка во всех тканях, но в большей степени в мышцах. Для реализации анаболического эффекта андрогенов необходимым условием является присутствие соматотропина. Имеются данные, сввдетельствую-щие об участии андрогенов в регуляции биосинтеза макромолекул в женских репродуктивных органах, в частности синтеза мРИК в матке. [c.283]

    Ввиду исключительной роли соляной кислоты в переваривании белков были предприняты попытки объяснить механизм ее секреции в желудке. В деталях этот механизм до сих пор не выяснен, однако имеющиеся данные свидетельствуют, что образующиеся при диссоциации хлорида натрия в крови ионы хлора диффундируют через клеточную мембрану и соединяются с ионами водорода, которые в свою очередь освобождаются при диссоциации угольной кислоты, образующейся в обкладочных клетках из конечных продуктов обмена —Н,0 и СО,. Образовавшаяся соляная кислота затем экскретируется обкладочными клетками в полость желудка. Равновесие ионов СГ между кровью и обкладочными клетками достигается поступлением отрицательно заряженных ионов НСО, из клеток в кровь взамен ионов СГ, поступающих из крови в клетки. Предполагается участие АТФ, поскольку синтез соляной кислоты требует энергии. [c.424]

    Следует отметить, что при некоторых поражениях желудка (обычно при воспалительных процессах) могут нарушаться секреция соляной кислоты и соответственно переваривание белков. [c.424]

    Не менее важно в диагностике заболеваний почек исследование активности ферментов мочи. При острых воспалительных процессах в почках прежде всего отмечается повышенная проницаемость клубочковых мембран, что обусловливает выделение белка, в том числе ферментов, с мочой. В целом сдвиги в обмене веществ почечной ткани могут быть вызваны блокадой клубочкового кровотока, нарушением фильтрации и реабсорбции, блокадой оттока мочи, поражением юкстагломерулярного аппарата, нарушением секреции и т.д. [c.616]

    По данным одной из работ, секреция многих гетерологичных белков в Е. соИ зависит от уровня экспрессии соответствующих генов. Чужеродные белки, синтезируемые наиболее активно, не обязательно столь же активно секретируются. Иногда интенсивный синтез чужеродного белка вызывает перегрузку секреторного аппарата и его блокирование. Таким образом, если нужно, чтобы данный белок непременно секретировался, то можно попытаться понизить уровень экспрессии соответствующих генов. [c.126]

    Основная цель экспериментов по клонированию генов, которые предполагается использовать в биотехнологии, — подбор условий для эффективной экспрессии в нужном организме-хозяине. К сожалению, сам факт встраивания того или иного гена в клонирующий вектор еще не означает, что этот ген будет экспрессирован. В то же время, чтобы получение коммерческого продукта было экономически оправданным, уровень его синтеза должен быть достаточно высоким. Для достижения эффективной экспрессии уже сконструировано много специфических векторов для этого проводились манипуляции с целым радом генетических элементов, контролирующих процессы транскрипции и трансляции, стабильность белков, секрецию продуктов из хозяйской клетки и т. д. Среди молекулярно-биологических свойств систем экспрессии наиболее важны следующие 1) тип промотора и терминатора транскрипции 2) прочность связывания мРНК с рибосомой 3) число копий клонированного гена и его локализация (в плазмиде или в хромосоме хозяйской клетки) 4) конечная локализация синтезируемого продукта 5) эффективность трансляции в организме хозяина 6) стабильность продукта в хозяйской клетке. [c.105]

    По длине пептидных цепей гормоны гипофиза значительно различаются между собой. Некоторые из них относятся к белкам среднего молекулярного веса. Например, гормон роста человека имеет мол. вес. 21 500 и характеризуется высокой специфичностью гормоны роста из других источников не могут его заменять. Гормон, стимулирующий функцию щитовидной железы (тиреотропии, ТТГ), представляет собой гликопротеид с мол. весом 28 000. С другой стороны, гормоны нейрогипофиза (задней доли гипофиза) вазопрессии и окситоцин являются простыми пептидами, построенными всего лишь из 9 аминокислотных остатков (собственно, из восьми, если считать цистин одной аминокислотой рис. 2-2). Как указывает уже само название, нейрогипофиз состоит из нервной ткани, секреторная функция которой находится под непосредственным контролем центральной нервной системы. Вазопрессии является основным фактором, регулирующим объем циркулирующей крови и артериальное давление на уровень секреции этого гормона оказывает влияние стресс. Окситоцин действует на гладкие мышцы матки при родах, а также служит триггером лактации. Выделение молока из молочных желез в определенной мере зависит от сосательных движений младенца, под влиянием которых происходит рефлекторное высвобождение окситоцина в кровоток. [c.321]


    К пептидным гормонам относятся инсулин, продуцируемый поджелудочной железой, регулирующий метаболизм углеводов, жиров и белков, содержащий 51 аминокислотный остаток секретин, вырабатываемый в желудочно-кишечном тракте, определяющий секреторную функцию желудочно-кишечного тракта, содержащий 21 аминокислотный остаток в передней доле гипофиза вырабатываются адренокор-тикотропин (34 аминокислоты), контролирующий активность коры надпочечников, пролактин (198 аминокислот), влияющий на рост грудных желез и секрецию молока в задней доле гипофиза вырабатываются вазопрессин (9 аминокислот), действующий как диуретик и сосудосуживающее, и окси-тоцин (9 аминокислот), стимулирующий сокращение гладкой мускулатуры. Это только иллюстративный перечень гормонов пептидной структуры — их значительно больше, многие из них еще изучены не полностью, как в плане строения, так и функциональности. Особенно важно и проблематично исследование связи их строения с активностью. Данные по связи структура — активность позволяют иногда получать синтетические полипептиды с активностью, превосходящей природные. Так, варьируя аминокислотный состав нейрогипофизных гормонов (схема 4.4.1) было получено около 200 аналогов, из которых один, [4-ТИг]-оксито-цин оказался высокоактивным. [c.81]

    Осн. физиол. ф-ция А.-стимуляция биосинтеза и секреции стероидных гормонов корой надпочечников. Механизм действия включает специфич. связывание А. с рецепторами плазматич. мембраны клеток, стимуляцию в плазматич. мембране фермента аденилатциклазы, осуществляющей превращение АТФ в циклич. аденозинмонофосфат. Последний активирует в цитоплазме протеинкиназу, катализирующую серию р-ций фосфорилирования, в результате чего резко увеличивается скорость образования кортикостероидов, а также синтез специфич. белка, необходимого для стимуляции лимитирующей стадии синтеза стероидов - превращения холестерина в прегненолон. А. обладает также [c.37]

    А. вырабатывается специализиров. клетками передней доли гипофиза. Вначале синтезируется высокомол. гликози-лированный белок-предшественник - проопиомеланокортин. Специфич. ограниченный протеолиз зтого белка приводит к образованию А. Секреция А. регулируется гипоталамусом, в к-ром вырабатывается пептид кортиколиберин, стимулирующий выделение А. в кровь. Препараты А. применяют в медицине для предупреждения атрофии надпочечников и стимулирования их функции. а. а. Булатов. [c.38]

    Биосинтез Л г осуществпяется из а- и -субъединиц, к рые образуются раздельно из соответствующих высокомол белков-предшественников, аминокислотная последовательность к-рых кодируется разл генами Образование зрелых полипептидных цепей происходит в результате специфич протеолитич расщепления белков-предшественников У женских особей Л г стимулирует овуляцию, разрыв фолликула с освобождением яйцеклетки и формирование желтого тела а также секрецию прогестерона В мужском организме Л г стимулирует ф-цию интерстициальных клеток семенников, в т ч секрецию ими мужского полового гормона тестостерона Снижение секреции Л г приводит к нарушению детородной ф-ции и бесплодию Л г выделяют из гипофизов животных и человека [c.619]

    В клетках с интенсивной секрецией белка и развитым эндоплазматич. ретикулумом значит, часть цитоплазматической Р. прикреплена к его мембране иа пов-сти, обращенной к цитоплазме. Эти Р. синтезируют полипептиды, к-рые непосредственно транспортируются через мембрану для дальнейшей секреции. Синтез полипептидов для внутриклеточных нужд происходит в осн. на свободных (не связанных с мембраной) Р. цитоплазмы. При этом транслирующие Р. не равномерно диспергированы в цитоплазме, а собраны 521 [c.265]

    Вырабатывается X. в слизистой оболочке двенадцатиперстной кишки и верх, отдела тонкой кишки в ответ на раздражение продуктами распада белков и жиров. Осн. физиол. ф-ции X.- стимулирование сокращения желчного пузыря и секреции пищеварит. ферментов поджелудочной железой. Первоначально эти две ф-ции приписывались двум разным гормонам - соотв. X. и панкреозимину. В 1964 из слизистой оболочки тонкого кишечника был вьщелен высо-коочищенный пептвд, состоящий из 33 аминокислотных остатков и обладающий активностью X. и панкреозимина. [c.299]

    Осн. путь биосинтеза Э. исходит из холестерина в организме они образуются в железах внутр. секреции (яичниках, семенниках, надпочечниках) непосредственно из андрогенов при участии фермента ароматазы напр., в организме женщины в сутки вырабатывается 300-700 мкг эстрадиола. С помощью транспортной системы крови (альбумин и глобулин, связывающий половые гормоны) Э. доставляются к орга-нам-мищеням, проникают через клеточные мембраны в цитоплазму, 1де связываются с рецепторами Э. Образующийся рецепторный комплекс переходит в адро клетки и активирует геном, что приводит к синтезу специфич. белков, в т.ч. рецепторов. [c.490]

    Процедура вьщеления ДНК в клетки дрожжей довольно проста. Обычно целлюлозную клеточную стенку удаляют обработкой ферментами, получая так называемые сферопласты. Их инкубируют с ДНК в присутствии СаС и полиэтиленгликоля. Мембрана при этом становится проницаемой для ДНК. Дальнейшая ин( а-ция сферопластов в среде с агаром восстанавливает клеточную стенку. Селекция дрожжевых клонов, трансформированных рекомбинантными плазмидами, основана на применении в качестве клеток-хозяев определенных мутантов, не способных расти на среде, в которой отсутствует тот или иной питательный компонент. Векторная плазмида содержит гены, которые при попадании в клетку-хозяина придают ей этот недостаюший признак. Трансформанты легко отбираются по их способности давать колонии на обедненной среде. Применяя приемы, аналогичные использовавшимся при клонировании в бактериях, удается достичь синтеза чужеродных белков в дрожжевых клетках. Эти клетки подобно В. subtilis секретируют большое количество белка во внеклеточную среду, что используется также для секреции чужеродных белков, например интерферона человека (с. 43). [c.125]

    Гомеостаз ионов кальция регулируется сложным путем. Ключевые роли в этом процессе играют паратиреоидный гормон (ПТГ) и тиреоидный гормон кальцитонин. При уменьшении концентрации ионов Са + возрастает секреция ПТГ — пептидного гормона, содержащего 83 аминокислотных остатка. Непосредственно под влиянием этого гормона остеокласты увеличивают растворение содержащихся в костях минеральных соединений. ПТГ увеличивает также реабсорбцию ионов a + в почечных канальцах. Суммарный эффект проявляется в повышении уровня кальция в сыворотке крови. В свою очередь при увеличении содержания ионов Са + сек-ретируется гормон кальцитоцин, действие которого состоит в снижении концентрации ионов Са2+засчет ускорения отложения кальция в результате деятельности остеобластов. Таким образом, эти два гормона действуют по системе пуш-пул (push-pull) с обратной связью (гл. 6, разд. Е.4). В процессе регуляции концентрации ионов кальция принимает участие также витамин D (дополнение 12-Г), который, судя по всему, требуется для синтеза Са2+-связывающих белков, необходимых для всасывания ионов Са" + в кишечнике, реабсорбции его в почках и растворения костной ткани. Своевременное поступление нужных количеств витамина D является [c.374]

    Значительным успехам в понимании детального строения антител способствовал тот факт, что у больных с опухолями лимфатической системы (например, при опухоли костного мозга — множественной миеломе) была обнаружена секреция огромных количеств гомогенных иммуноглобулинов или их фрагментов. В скором времени подобные опухоли были найдены у мышей, которые стали источником экспериментального материала. Оказалось, что белки Бенс-Джонса, секретируемые в мочу у больных миеломой, представляют собой легкие цеп имлгуноглобулннов. Определение аминокислотной последовательности показало, чго у каждого больного белок Бенс-Джонса гомогенен, однако не было обнаружено даже двух больных, секретирующих один л тот же белок. Позже были получены также интактные гомогенные миеломные глобулины и макроглобулины (IgM). [c.382]

    АКТГ, АСТН) секреция кортизола достигает у взрослого человека 15—30 мг в день. В крови кортизол присутствует в основном в связанной с белком форме белок плазмы, транспортирующий кортизол, называется транскортином. Как упоминалось в гл. 11, разд. Е, 2, кортизол — это глюкокортикоид, стимулирующий глюконеогенез и накопление глюкогена в печени. В мышцах и других тканях кортизол ингибирует синтез белка, а в жировой ткани усиливает расщепление жиров с освобождением жирных кислот. [c.585]

    В процессе биосинтеза коллагена в фибробластах сначала образуется водорастворимый протоколлаген, не содержащий гидроксипролина и гидроксилизина. Обе гидроксиаминокислоты образуются позднее при действии на молекулу белка особой проколлагенгидроксилазы. После спонтанного образования трехспиральной структуры в молекулу через ОН-группы гидроксилизина встраивается углеводный компонент (галактоза, глюкоза). Окончательное формирование коллагеновой фибриллы происходит во внеклеточном пространстве после секреции предшественника. [c.424]

    Ангиотензин II - октапептидный тканевый гормон, входит в качестве центрального действующего элемента в ферментную ренин-ангиотензино-вую систему, в которой осуществляется его биогенез и распад. Ангиотензин II - самый мощный из известных прессорных агентов в системе крово-Ьбращения. Он стимулирует сужение периферических артериол по всему организму и тем самым повышение артериального давления. Помимо этого ангиотензин II активизирует секрецию ряда гормонов (главным образом альдостерона), влияет на работу сердца, печени, центрального и периферического отделов нервной системы, а также вызывает ряд других откликов в организме млекопитающих. Его биохимический предшественник - ангиотензин I, образуется, согласно приведенной ниже схеме, из глобулярного белка крови ангиотензиногена при действии протеолитиче-ского фермента ренина. [c.269]

    Следует подчеркнуть, что остановка элонга ции по выходе сигнальной последовательности из рибосомы представляется очень важной для нормальной секреции (или вхождения мембрану) синтезируемого белка. В самом деле, если бы не было остановки, то продолжающаяся элонгация могла бы привести к допожитель-ному сворачиванию торчащего растущего пептида в водной фазе клетки и, как результат, упрятыванию сигнальной последовательности это сделало бы невозможным его узнавание мембраной и последующую секрецию. Следовательно, остановка элонгации обеспечивает необходимое ожидание сигнальной последовательности в нужной экспонированной конформации для причаливания к мембране. [c.285]

    Еще 50 лет назад ученые Осборн и Мендель доказали, что в белке пшеницы мало лизина. В настоящее время установлено, что лизин в организме является не только структурным элементом белка, но и въшолняет ряд важных биохимических функций — является предшественником карнитина и оксилизина, способствует транспорту кальция и стронция в клетки и др. В настоящее время во многих странах препарат лизина добавляют к хлебу для повышения его биологической ценности, а также для улучшения внешнего вида. Доказано, что лизин улучшает аппетит, способствует секреции пищеварительных ферментов, предотвращает кариес зубов у детей. [c.159]

    При недостаточной секреции (точнее, недостаточном синтезе) инсулина развивается специфическое заболевание—диабет (см. главу 10). Помимо клинически выявляемых симптомов (полиурия, полидипсия и полифагия), сахарный диабет характеризуется рядом специфических нарушений процессов обмена. Так, у больных развиваются гипергликемия (увеличение уровня глюкозы в крови) и гликозурия (выделение глюкозы с мочой, в которой в норме она отсутствует). К расстройствам обмена относят также усиленный распад гликогена в печени и мышцах, замедление биосинтеза белков и жиров, снижение скорости окисления глюкозы в тканях, развитие отрицательного азотистого баланса, увеличение содержания холестерина и других липидов в крови. При диабете усиливаются мобилизация жиров из депо, синтез углеводов из аминокислот (глюконеогенез) и избыточный синтез кетоновых тел (кетонурия). После введения больным инсулина все перечисленные нарушения, как правило, исчезают, однако действие гормона ограничено во времени, поэтому необходимо вводить его постоянно. Клинические симптомы и метаболические нарушения при сахарном диабете могут быть объяснены не только отсутствием синтеза инсулина. Получены доказательства, что при второй форме сахарного диабета, так называемой инсулинрезистентной, имеют место и молекулярные дефекты в частности, нарушение структуры инсулина или нарушение ферментативного превращения проинсулина в инсулин. В основе развития этой формы диабета часто лежит потеря рецепторами клеток-мишеней способности соединяться с молекулой инсулина, синтез которого нарушен, или синтез мутантного рецептора (см. далее). [c.269]

    Имеются экспериментальные доказательства прямой и опосредованной связи белкового обмена с обеспеченностью организма витаминами, в частности В , В,, В , РР и др. Обмен белков регулируется, кроме того, деятельностью желез внутренней секреции. Гормоны определяют в известной мере направление (в сторону синтеза или распада) и интенсивность белкового обмена. Например, после введения АКТГ и гормонов щитовидной железы наблюдается интенсивный распад тканевых белков. Другие гормоны, в частности СТГ, андрогены и эстрогены, напротив, стимулируют анаболические реакции и способствуют синтезу белка. Введение некоторых гормонов коркового вещества надпочечников вызывает диспро-теинемию и приводит к отрицательному азотистому балансу, что некоторые авторы связывают со стимулированием глюконеогенеза из углеродных скелетов аминокислот (после дезаминирования последних—см. далее). [c.412]

    Поступление пищевого белка в желудок стимулирует секрецию гормона гастрина, который в свою очередь стимулирует секрецию НС1 и ненсниогена в клетках слизистой оболочки. [c.420]

    Большинство витаминов в составе ферментных систем катализируют реакции превращения аминокислот и белков, жиров, стероидов, углеводов и нуклеиновых кислот в животном организме к таким химическим процессам относятся реакции окисления и восстановления, переноса электрона, переаминирования, трансметилнрования, изомеризации, карбоксилирования, декарбоксилирования, переноса ацильных и одноуглеродных групп, реакции, в частности, связанные с кроветворением, с кальцификацией костей и др. При участии витаминов обеспечивается нор1мальное функционирование всех животных тканей, органов и желез внутренней секреции, нормальные процессы обмена веществ [И, 12, 14—21]. [c.12]

    В сложных многоклеточных организмах роль сигнальных, регуляторных веществ играют гормоны. В организмах животных имеются две большие группы гормонов — белки, полипептиды и их производные и стероиды. К первой группе относится тирео-глобулин — белок щитовидной железы, содержащий иодированный тироксин, инсулин, регулирующий уровень сахара в крови, окситоцин, вызывающий сокращение матки, вазопрессин, регулирующий кровяное давление, и т. д. Гормоны синтезируются в железах внутренней секреции и осуществляют регуляцию на уровне организма. Стероиды — соединения, содержащие углеродный скелет циклопентанофенантрена [c.50]

    Рибосома выполняет несколько задач трансляцию, т. е. перевод генетической информации в мРНК на язык первичной структуры белка, изготовление белка п его секрецию. Рибосомы всех организмов подразделяются на две функциональные области—домен трансляции и домен секреции. Для работы рибосомы требуются так называемые факторы элонгации ЕР—Ти и [c.273]

    Один из клонирующих векторов системы слияния, сконструированных для получения специфических антител, содержит 5 "-концевой сегмент гена ompF Е. соН, кодирующего один из наружных мембранных белков, и прилегающую к нему часть гена la Z (Р-галактозидазы) Е. соИ (рис. 6.7). Этот сегмент содержит информацию, необходимую для инициации транскрипции и трансляции химерного гена, а также для секреции химерного белка. Несмотря на то что укороченный ген la Z лищен кодонов для первых восьми аминокислот, кодируемый им белок сохраняет ферментативную активность. В такой [c.113]

    Обычно транспорт белков через клеточную мембрану обеспечивают N-концевые аминокислотные последовательности, называемые сигнальными пептидами (сигнальными последовательностями, лидерными пептидами). Иногда удается сделать белок секретируемым, присоединив к кодирующему его гену нуклеотидную последовательность, ответственную за синтез сигнального пептида. Однако простое наличие сигнального пептида не обеспечивает эффективной секреции. Кроме того, Е. соН и другие грамотрицательные микроорганизмы обычно не могут секретировать белки в окружающую среду из-за наличия наружной мембраны. Есть по крайней мере два способа решения этой проблемы. Первый - использование грамположитель-ных про- или эукариот, лишенных наружной мембраны, второй - создание грамотрицательных бактерий, способных секретировать белки в среду, с помощью генной инженерии. [c.126]

    Если слияние гена-мишени с фрагментом ДНК, кодирующим сигнальный пептид, не приводит к эффективной секреции белкового продукта, приходится использовать другие стратегические приемы. Один из таких приемов, с успехом примененных в отнощении интерлейкина-2, основывался на слиянии гена, кодирующего интерлейкин-2, с геном, кодирующим полноразмерный предшественник мальтозосвязывающего белка, а не только его сигнальную последовательность, и разделении этих генов сегментом ДНК, кодирующим сайт узнавания для фактора Х . Когда такой химерный ген включили в плазмидный вектор и использовали его для трансформации Е. соИ, в периплазме хозяйской клетки обнаружили в большом количестве химерный белок. Обработав его фактором Х , получили функциональный интерлейкин-2. [c.126]

    Эффективность синтеза белка зависит от наличия в его мРНК специфических нуклеотидных последовательностей. Чтобы предотвратить разрушение белкового продукта или обеспечить его секрецию, клонированные гены, которые кодируют этот белок, подвергают направленным изменениям. Это может быть присоединение сайта связывания рибосомы перед сайтом инициации транскрипции (который в свою очередь тоже бывает нужно присоединить) или до- [c.130]

    Секреция гетерологичных белков, синтезируемых S. erevisiae В дрожжевых клетках гликозилируются только секретируемые белки, поэтому для получения рекомбинантных белков, которые для перехода в активную форму должны подвергнуться N-или 0-гликозилированию, необходимо использовать системы секреции. Для этого перед кДНК, которая кодирует интересующий исследователя белок, нужно поместить так называемый пре-про-а-фактор - лидерную (сигнальную) последовательность гена фактора спаривания дрожжей. Синтезируемый рекомбинантный белок сможет в этом случае эффективно секретироваться дрожжами. [c.139]

    Во время транспорта белка в нем образуются дисульфидные связи, происходят протеолитическое расщепление и другие посттрансляцион-ные модификации, так что в некоторых случаях в среду попадает уже активный белок. Лидерный пептид обеспечивает проникновение белка через цитоплазматическую мембрану и секрецию, при этом сам он отщепляется дрожжевой эндо-протеиназой, узнающей дипептид Lys-Arg. Поз- [c.139]


Смотреть страницы где упоминается термин Белки секреция: [c.179]    [c.218]    [c.129]    [c.593]    [c.52]    [c.261]    [c.225]    [c.127]    [c.127]    [c.140]    [c.140]   
Основы генетической инженерии (2002) -- [ c.7 , c.52 , c.97 , c.190 , c.191 , c.201 , c.221 , c.326 , c.327 , c.328 ]

Генетическая инженерия (2004) -- [ c.130 , c.250 , c.251 , c.252 , c.253 , c.254 , c.255 , c.256 , c.318 , c.319 , c.320 , c.321 , c.421 , c.469 ]




ПОИСК







© 2025 chem21.info Реклама на сайте