Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соматические растений, генетика

    Потенциальные приложения этого явления очевидны. Клетки, которым при помощи методов генетики соматических клеток приданы желаемые наследственные признаки, можно использовать для получения целых растений. Так, целые растения были получены из диплоидных [c.329]

Рис. 18.23. Диплоидное растение табака, имеющее желаемую генетическую структуру, полученное методами генетики соматических клеток. Используемые мутации были отобраны предварительно в линиях гаплоидных Рис. 18.23. <a href="/info/1397695">Диплоидное растение</a> табака, имеющее желаемую <a href="/info/1304505">генетическую структуру</a>, <a href="/info/3912">полученное методами</a> <a href="/info/1356435">генетики соматических</a> клеток. Используемые мутации были отобраны предварительно в линиях гаплоидных

    Развитие современной генетики характеризуется проникновением молекулярных принципов исследований во все области учения о наследственности. Широкое развитие получили исследования по таким проблемам, как искусственный синтез гена вне организма, продленный мутагенез и молекулярная природа мутаций, гибридизация соматических клеток, получение гаплоидных растений при культивировании пыльников, механизмы регуляции активности генов и действие генов в процессах индивидуального развития, молекулярные основы рекомбинаций, репараций (восстановления) [c.9]

    В этом разделе можно сослаться только на примеры геномной инженерии растений. Пластичность растений позволяет манипулировать их геномами и даже получать искусственно новые виды. Такие задачи издавна решались в опытах по межвидовой гибридизации. В частности, крупным достижением генетики и селекции стало создание плодовитых растительных гибридов— амфидиплоидов половым путем. На счету клеточной и геномной инженерии получение плодовитых растительных гибридов путем слияния протопластов соматических клеток (см. гл. 5). [c.439]

    В области биотехнологии молекулярная генетика создает фундаментальные основы для создания продуцентов различного рода веществ по двум направлениям. Во-первых, в ходе идентификации новых генов человека и других организмов выявляются все новые биорегуляторы и их рецепторы, которые можно использовать в качестве лекарственных препаратов для ветеринарии и медицины. Во-вторых, совершенствуются системы экспрессии различного рода генов в разнообразных клетках и организмах, что в свою очередь создает две перспективы создание клеток (бактериальных и эукариотических) и организмов (растений и животных), продуцирующих различного рода вещества, которые далее могут использоваться как лекарства, пищевые добавки, ферменты в заводских процессах или компоненты диагностикумов или вакцин, а также для создания организмов с улучшенными свойствами, например, трансгенных растений, устойчивых к засухам или имеющих повышенную переносимость к засоленным почвам, или животных, устойчивых к инфекциям. Наиболее впечатляющим достижением в области создания новых продуцентов можно назвать создание живых ферментеров - животных, секретирующих лекарственные препараты в молоко. Развитие технологий создания трансгенных животных делает процедуру создания такого ферментера достаточно рутинной. Эти технологии базируются на достижениях генетики соматических клеток и в последнее время намечается тенденция использования для этих целей систем клонирования животных. Можно сказать, что развитие молекулярной генетики перевело биотехнологию на уровень целых организмов, заложило предпосылки экологически чистых технологических процессов и интенсивных сельскохозяйственных технологий. Это особенно важно ввиду намечающихся демографических и экологических кризисов перенаселенной планеты. [c.8]


    Так, в короткий срок наряду с общей генетикой, генетикой лшвотных и генетикой растений возникли цитогенетика, генетика человека, медицинская генетика, космическая генетика, генетика популяций, эволюционная генетика, биохимическая генетика, генетика микроорганизмов, генетика вирусов, генетика соматических клеток, генетика фотосинтеза, экологическая генетика, математическая генетика, генетика поведения и т. д. Многие из этих разделов генетики в настоящее время, как это было продемонстрировано на XIV Международном генетическом конгрессе, состоявшемся в 1978 г. в Москве, развиваются особенно бурно. [c.13]

    Почти два десятилетия активной работы биотехнологов в селекционных и биотехнологических центрах страны позволили получить сотни и тысячи регенерантов растений, в том числе десятки и сотни с ценными свойствами повышенной устойчивостью к засухе, высоким и низким температурам, засолению, опасным грибковым, бактериальным и вирусным заболеваниям, повышенной кислотности почвы. На их основе получены новые ценные сорта ярового ячменя во ВНИИ центральных районов Нечерноземной зоны и НИИ Северо-Востока яровой пшеницы — в НИИ Юго-Востока озимой пшеницы — в Краснодарском НИИХ клевера и люцерны — во ВНИИ кормов, сахарной свеклы — во ВНИИСХ, картофеля — во ВНИИ картофельного хозяйства плодовых культур во ВНИИ генетики и селекции плодовых растений. Всероссийском селекцион-но-технологическом институте садоводства и питомниководства. В Госу-дарственный реестр внесены первые отечественные сорта зерновых и других культур, полученные отечественными селекционерами с использованием линий, созданных на основе биотехнологических методов гаплоидной и клеточной селекции, соматической гидрадизации и др. В России, как и во многих других странах мира, впервые создана правовая база для осушествления генно-инженерных и других биотехнологических работ с использованием в производстве новых трансформированных генотипов растений, животных и микроорганизмов. Приняты и действуют законы О государственном регулировании в области генно-инженерной деятельности , О селекционных достижениях , О племенной работе , О семеноводстве и др. [c.425]

    Еще одно свойство неменделевского наследования состоит в том, что в тех случаях, когда сохраняются оба генотипа, во время роста растения одни ткани приобретают дикий, а другие-мутантный фенотип. Таким образом, у одного и того же гетерозиготного растения некоторые ткани имеют фенотип одного из родителей, в то время как другие обладают фенотипом второго родителя. Такое явление соматической сегрегации отличается от стабильности свойств, определяемых, согласно мен-делевской генетике, ядерным генотипом. [c.281]

    Существенное преимущество растений по сравнению с животными, важное для генетики соматических клеток, заключается в том, что гаплоидные клетки растений можно культивировать in vitro. В процессе онтогенеза всех растений происходит смена гаплоидных и диплоидных фаз. У мхов и печеночников доминирует гаплоидная фаза. Эта фаза, называемая гаметофитом, сохраняется и у высщих растений, хотя у них она сильно редуцирована. В процессе мейоза образуются мужские и женские клетки, которые проходят несколько митотических делений. Диплоидность восстанавливается при оплодотворении. Клетки гаплоидной фазы можно поддерживать в культуре. В такой культуре клеток легко тестировать проявление рецессивных маркеров подобно тому, как это делается при работе с ауксотрофными маркерами бактерий. При использовании соответствующих селективных сред можно проводить скрининг больщих популяций клеток, подбирая условия, при которых способность к пролиферации сохраняют только нужные мутанты. [c.329]

    На рис. 18.23 изображена схема получения диплоидного растения табака, несущего определенную комбинацию генов с использованием методов генетики соматических клеток. Важный этап в биосинтезе аминокислот Ni otiana taba um осуществляет нитратредуктаза, превращающая нитраты в нитриты. Для синтеза этого фермента необходимы два гена. При использовании соответствующих селективных сред в культуре гаплоидных клеток табака, отобраны мутации спх и nia, затрагивающие оба гена. Ни одна из гаплоидных линий, несущих мутации в этих генах, не способна использовать нитрат в качестве источника азота. При слиянии комплементирующих линий образуется диплоид, имеющий генотип спх/ + и nia +, способный расти на нитрате как на единственном источнике азота. [c.329]

    Методы генетики соматических клеток растений имеют много важных приложений, поскольку растительные клетки в культуре в отличие от клеток животных обладают очень важным свойством-из одной растительной клетки можно получить целое растение. У животных линия клеток, которые затем образуют гаметы, отделяется от соматических клеток на ранних этапах индивидуального развития особи. По мере этого развития соматические клетки специализируются, при этом они теряют способность при делении восстановить целую особь. У растений генеративные клетки не существуют в виде отдельной клеточной суб-по-пуляции цветок формируется из неспециализированных соматических клеток. Тотипотентность растительных клеток, выращенных в культуре, была впервые показана в 1958 г. Одиночная клетка моркови при пролиферации давала массу недифференцированных клеток, так называемый каллус, которые на среде, содержащей растительные гормоны, подвергались дифференцировке, образуя корни и стебель. На стебле формировались цветы и затем семена. Из этих семян затем вырастали нормальные растения. [c.329]


    Помимо привычных методов гибридизации современный селекционер может воспользоваться для улучшения растительных культур методами молекулярной генетики. К их числу относятся введение в растительную клетку новой генетической информации с помощью плазмид, отбор новых типов из изолированных протопластов и соматическая гибридизация протопластов. Человек выращивает для своих нужд лишь небольшое число растений, а между тем существует множество еще неизученных растений, которые можно было бы широко использовать. К числу наиболее многообещающих видов относятся гваюла, дающая каучук, хохоба, дающая воск и масло, ЕсЫпосМоа, выращиваемая на зерно, и спаржевый горох, используемый для получения растительного белка. Новые методы разведения растений с применением тканевых культур и регулируемого воспроизведения могут быть полезны также и в лесоводстве. [c.527]

    Конверсия генов. Еще один относящийся к обсуждаемому предмету феномен давно известен в экспериментальной генетике под названием генной конверсии [122]. Различные данные, полученные при изучении глобиновых генов, позволяют предполагать наличие такого феномена и в геноме человека (разд. 4.3 см. также рис. 2.97). Генная конверсия есть не что иное, как модификация одного из двух аллелей другим, в результате чего гетерозигота Аа, например, становится гомозиготой АА. Винклер, который впервые обсуждал этот феномен более 50 лет тому назад, допускал физиологическое взаимодействие аллелей. Однако работы на дрожжах показали, что он связан с атипичной рекомбинацией. Данный процесс иллюстрирован на рис. 2.97. Кроссинговер всегда приводит к разрыву последовательности ДНК в сайте перекреста. Обычно разрыв репарируется, для чего последовательность сестринской хроматиды используется как матрица. Таким образом восстанавливается исходная двойная спираль. Однако иногда репарация осуществляется на матрице гомологичной хромосомы. В этом случае наблюдаются отклонения от обычной сегрегации. Генная конверсия имеет место и в соматических тканях, особенно у растений. Возможно, что в этом случае рекомбинационный процесс протекает атипично. Наличие генной конверсии не является неожиданным, поскольку спаривание гомологичных хромосом в соматических клетках и соматический кроссинговер характерны для многих видов [c.144]

    Типы гетерозиса. Шведский генетик А. Густафссон предложил разделить гетерозис у растений на три основных типа репродуктивный, соматический и приспособительный. [c.283]

    Культура изолированных органов, тканей и клеток растений в настоящее время находит все большее применение в биологических исследованиях. Такие методы, как клональное микроразмножение растений, оздоровление от вирусной инфекции с помощью культуры апикальных меристем, регенерация растений из каллусных культур, находят сейчас практическое применение. Существенную помощь методы культивирования in vitro могут оказать генетикам и селекционерам в получении новых форм растений. Используя гаплоиды, незрелые или нежизнеспособные зародыши гибридов, сомаклональные варианты растений-регенерантов, биотехиологи вместе с селекционерами ускоряют и облегчают селекционный процесс. Более сложная техника манипулирования с клетками растений необходима для получения соматических гибридов слиянием протопластов или для генетической трансформации клеток и растений. [c.232]

    В ранний период развития генетики вейсмановское разделение на зародышевую плазму и сому уступило место разделению на генотип и фенотип (Johannsen, 1911). Первое разграничение — чисто морфологическое и не имеет всеобщего применения, а второе—генетическое и применимо ко всему живому. Разделение на генотип и фенотип позволяет прояснить проблему наследственности. Признаки, детерминируемые недавно приобретенным генетическим материалом соматических тканей, могут быть наследственными, если эти ткани затем участвуют в создании репродуктивных клеток, что вполне возможно у растений. Что же касается фенотипических признаков, то они никогда не наследуются, а поэтому фенотипические модификации также не передаются по наследству, [c.183]


Смотреть страницы где упоминается термин Соматические растений, генетика: [c.207]    [c.171]    [c.261]    [c.411]    [c.86]    [c.55]    [c.207]   
Современная генетика Т.3 (1988) -- [ c.329 ]




ПОИСК





Смотрите так же термины и статьи:

Век генетики

Генетика



© 2025 chem21.info Реклама на сайте