Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аденозинтрифосфат и мышечное сокращение

    Теперь, познакомившись с некоторыми основными законами, которые регулируют обмен энергии в химических системах, мы можем обратиться к рассмотрению энергетического цикла в клетках. Для гетеротрофных клеток источником свободной энергии, получаемой в химической форме, служит процесс расщепления, или катаболизм, пищевых молекул (в основном углеводов и жиров). Эту энергию клетки используют в следующих целях 1) для синтеза биомолекул из молекул-предшественников небольшого размера 2) для выполнения механической работы, например мышечного сокращения, 3) для переноса веществ через мембраны против градиента концентрации и 4) для обеспечения точной передачи информации. Главным связующим звеном между клеточными реакциями, идущими с выделением и с потреблением энергии, служит аденозинтрифосфат (АТР рис. 14-2). При расщеплении высокоэнергетического клеточного топлива часть содержащейся в этом топливе сво- [c.413]


    Другой тип гигантских биологических молекул — белки в зависимости от своей природы они выполняют одну из двух следующих функций действуют в качестве катализаторов химических реакций, за счет которых поддерживается жизнь клетки, и являются строительным материалом для мышечных волокон, превращая химическую энергию аденозинтрифосфата (АТФ) в механическую энергию мышечного сокращения. Это дает организму возможность перекачивать кровь, усваивать пищу и передвигаться. Важную роль играют белки и как природные защитные материалы, из молекул которых построены кожа, мех, перья, предохраняющие животных от неблагоприятных воздействий окружающей среды. Издавна пользуется этими белковыми материалами и человек. [c.65]

    На сперматозоидах млекопитающих было, в частности, показано, что аденозинтрифосфат играет при сокращении хвоста сперматозоида, по-видимому, такую же роль, какую этому соединению приписывают в механизме сокращения мышечного волокна. [c.433]

    Сокращение мацерированного (вымоченного в воде или в 50%-ном растворе глицерина) мышечного волокна под влиянием АТФ отличается от сокращения живой мышцы при раздражении ее с нерва лишь меньшей скоростью этого процесса и отсутствием обратного расслабления после отмывания аденозинтрифосфата (по крайней мере в обычных условиях опыта). [c.441]

    АТФ-аденозинтрифосфат, АДФ - аденозиндифосфат, Р-фосфорная к-та нли ее остаток Фосфорилирование сопровождается активацией или инактивацией ферментов, напр, гликозилтрансфераз, а также изменением физ.-хим. св-в неферментных белков. Обратимое фосфорилирование белков контролирует, напр., такие важные процессы, как транскрипция и трансляция, метаболизм липидов, глюконеогенез, мышечное сокращение. [c.103]

    Прекрасной иллюстрацией значения белков является раскрытие механизма мышечного сокращения. Установлено, что в основе мышечного сокращения лежит изменение механо-эластических свойств особого сократимого белка мышц — актомиозина в результате взаимодействия его с аденозинтрифосфорной кислотой (стр. 425). Это взаи--модействие мышечного белка с аденозинтрифосфатом, сопровождающееся сокращением миофибрилл, можно наблюдать in vitro, т. е. вне организма. Если, например, на мацерированные (вымоченные в воде) мышечные волокна, лишенные возбудимости, подействовать раствором аденозннтри-фосфата (при определенных концентрациях солей), то можно наблюдать резкое сокращение этих волокон, во многих отношениях напоминающее сокращение живой мышцы. Здесь имеется совершенно несомненное доказательство того, что для сокращения мышцы необходимо химическое взаимодействие мышечных белков с определенным химическим веществом. [c.8]


    В. А. Энгельгардт и М. Н. Любимова, производя свои исследования над сократительным веществом мышц — белком миозином, обладающим, как было показано теми же авторами (стр. 417), выраженными ферментативными (аденозинтрифосфатазными) свойствами, обнаружили, что особым образом приготовленные миозиновые нити при взаимодействии с аденозиптрифосфа-том в определенных условиях резко изменяют свои механические свойства (эластичность и растяжимость). Одновременно происходит расщепление аденозинтрифосфата с образованием АДФ и Н3РО4. Эти наблюдения сразу же привлекли всеобщее внимание, наметили возможность объяснения самого механизма превращения химической энергии в механическую работу и заложили фундамент для нового направления в биохимии — механохимии мышечного сокращения. [c.425]

    Биологическое окисление служит главным источником энергии, необходимой для осуществления множества эндергонических биологических процессов. Свободная энергия, получающаяся при переносе пары электронов от субстрата к молекуле кислорода или к другому конечному акцептору электронов, превращается в результате ряда еще не вполне выясненных реакций (см. гл. XV) в химическую энергию макроэргического (богатого энергией) промежуточного продукта — аденозинтрифосфата (АТФ). Свободная энергия, выделяющаяся при полном гидролизе нирофосфатных связей АТФ, используется затем в какой-либо сопряи енной энергетически невыгодной ферментативной реакции (см. гл. II), благодаря чему эта реакция и может быть доведена до конца. Липман первым указал на фундаментальную роль гидролиза АТФ как двил ущей силы биохимических процессов. Эти процессы включают мышечное сокращение, фотосинтез, биолюминесценцию, разряд электрических органов, а также биосинтез белков, нуклеиновых кислот, сложных углеводов, липидов и т. д. [c.208]

    Термин макроэргические связи часто встречается в биохимических докладах. Он используется для обозначения групп, которые поставляют энергию для энергетически невыгодных биохимических процессов. Макроэргическая связь имеет в биохимии примерно тот же самый статус, что и спирт или эфир в органической химии все эти термины являются неточными — научный жаргон — и тем не менее существуют, хотя их неточность общепризнана. Наиболее часто макроэргической называют ангидридную связь между двумя концевыми фосфатными группами аденозинтрифосфата (АТФ) этот же самый трифос-фонуклеотид используется при синтезе РНК- Имеются и другие соединения, переносящие энергию, но АТФ наиболее распространен во всех живых организмах- Это активный источник энергии для многих биохимических реакций мышечного сокращения, передачи нервного возбуждения, биосинтеза, активного мембранного транспорта. [c.397]

    Свободные моносахариды, глюкоза например, в случае брожения дрожжевым соком получают фосфорную кислоту от аденозинтрифосфата (АТФ). Перенос фосфатного остатка с аденозинтрифосфата совершается при участии фермента гексокипазы. Первым продуктом фосфорилирования является гек-созо-6-фосфат. В случае же мышечного сокращения первым продуктом фосфорилирования гликогена, как уже известно, будет гексозо-1-фосфат. Одновременно под влиянием изомеразы происходит изомеризация глюкозо-6-фосфата во фруктозо-6-фосфат. Этот последний получает за счет аденозинтрифосфата в результате перефосфорилирования вторую молекулу фосфорной кислоты, которая становится при первом углероде. Таким образом возникает фруктозе-1,6-дифосфат (гексозодифосфат). Все это мол ет быть формулировано в тех же выражениях, как и в случае уже рассмотренного гликолиза, только исходным веществом будет глюкоза (иногда крахмал). [c.385]

    Некоторые мононуклеотиды играют важную роль в обменных процессах. Так, аденозинмонофосфат при дополнительном фосфорилировании превращается в адено-зиндифосфат (АДФ) и аденозинтрифосфат (АТФ). В макроэргических связях АТФ, УТФ (уридинтрифосфат) кумулирована энергия, используемая в процессах биосинтеза, мышечного сокращения и других проявлениях физиологических функций  [c.140]

    Сокращение глицеринизированных мышечных волокон исследовалось при погружении образцов в водные растворы, содержащие аденозинтрифосфат (АТФ)—реагент, участвующий в мышечной деятельности в физиологических условиях [46]. Изменение длины такого волокна в результате изменения концентрации АТФ в окружающей фазе при комнатной температуре показано на рис. 67. [c.206]

    Опыты с мышечными волокнами, отмытыми от большей части водорастворимых белков и всех экстрактивных веществ водой или 50% раствором глицерина, убедительно показали, что сокращение мышцы наступает в результате взаимодействия сократительного (контрактильного) белка мышцы с аденозинтрифосфатом. [c.430]

    На сперматозоидах млекопитающих было, в частности, показано, что аденозинтрифосфат играет при сокращении хвоста сперматозоида, по-видимому, такую же роль, какую этому соединению приписывают в механизме сокращения мышечного волокна. Так, например, было установлено, что при движении сперматозоидов в анаэробных условиях в чисто солевых средах наблюдается постепенное затухание подвижности клеток, сопровождающееся распадом в них запаса АТФ. При добавлении глюкозы или при продувании воздуха через такую суспензию подвижность сперматозоидов быстро восстанавливается. Одновременно наблюдается и восстановление концентрации АТФ в клетках до исходного уровня (И. И. Р1ванов). [c.456]



Смотреть страницы где упоминается термин Аденозинтрифосфат и мышечное сокращение: [c.79]    [c.386]    [c.142]    [c.458]    [c.247]   
Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.260 , c.261 , c.262 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.260 , c.261 , c.262 ]




ПОИСК





Смотрите так же термины и статьи:

Аденозинтрифосфат АТФ



© 2025 chem21.info Реклама на сайте