Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ОСНОВНЫЕ КОМПОНЕНТЫ КЛЕТКИ Углеводы

    Настоящий справочник отличается от имеющихся тем, что в нем не только описана химическая структура и биологическая роль основных биохимических компонентов живой клетки, но и охарактеризованы пути метаболизма данных компонентов в живом организме. Он состоит из семи разделов, в каждом из которых в алфавитном порядке дана соответствующая тepминoлorиЯi В разделах Белки , Нуклеиновые кислоты , Углеводы , Липиды приведены структурные формулы и показана биологическая роль биохимических компонентов клетки, описаны и проиллюстрированы схемами основные пути распада и синтеза важнейших биологически активных молекул. В разделе Ферменты содержатся сведения о типах ферментативного катализа, скорости ферментативных реакций, единицах измерения ферментативных реакций, о принципах классификации ферментов, регуляции биосинтеза и активности ферментов. Раздел Витамины включает характеристику отдельных представителей водо- и жирорастворимых витаминов. Особое внимание уделено ферментным реакциям, в которых участвуют витамины, приведены данные о содержании витаминов в продуктах питания, о суточной потребности человека в витаминах, о применении витаминов и витаминных препаратов в медицинской практике, сельском хозяйстве и т. д. В разделе Гормоны -освещены достижения по биохимии пептидных, белковых и стероидных гормонов. Рассмотрены вопросы биосинтеза, механизм действия гормонов на молекулярном уровне, взаимодействие гормонов с [c.3]


    Расскажите о транспорте основных компонентов среды - аминокислот, нуклеиновых кислот и белков, углеводов и органических кислот - в клетку. [c.71]

    Особенно четко потребность в восстановителе проявляется, если основным или единственным источником углерода для конструктивных процессов служит СО2 — предельно окисленное углеродное соединение. Для превращения углекислоты в структурные компоненты клетки и клеточные метаболиты необходимо ее восстановление до уровня углеводов, белков, липидов. Это же справедливо и при использовании в качестве источника углерода органических соединений, более окисленных, чем вещества тела, например ацетата. [c.281]

    Многочисленные анатомические исследования различных видов древесины в процессе ее развития показали, что молодые клетки вблизи камбия не содержат лигнина [1]. В дальнейшем, по мере утолщения клеточных стенок, относительное количество лигнина в них постепенно возрастает. Однако наибольшее количество лигнина откладывается в последней стадии развития клеток, перед их отмиранием. В этот период содержание лигнина в древесине достигает предельной величины, характерной для созревшей, мертвой ткани. Содержание полисахаридов, состоящих из пектиновых веществ, гемицеллюлоз и целлюлозы, в противоположность лигнину по мере старения клеток постепенно уменьшается (рис. 31). Необходимо, однако, учитывать, что на рис. 31 содержание отдельных компонентов в клеточных стенках трахеид приведено в относительных процентах. В действительности по мере увеличения толщины клеточных стенок в них откладываются слои неодинакового состава. Кроме того, отсутствовавший в межклетном, веществе и первичной оболочке лигнин к концу развития клетки откладывается там в наибольших количествах. Это наблюдение, сделанное с помощью цветных реакций на лигнин и углеводы, было подтверждено прямым определением содержания лигнина в срединной пластинке древесины дугласовой пихты, выделенной с помощью микроманипулятора [2]. В последней было найдено около 71% лигнина при среднем содержании его в древесине 28%. Предсуществование части гемицеллюлоз в клетках молодой древесины до их лигнификации, а также возникновение из камбия лубяной ткани, содержащей пектиновые вещества, целлюлозу и гемицеллюлозы, которые в живой ткани не лигнифицируются, дает основание предполагать, что основная масса лигнина и гемицеллюлоз откладывается в клеточных стенках на разных стадиях их развития. [c.289]

    Для протекания процессов биосинтетической природы необходима не только энергия в форме АТФ, но и восстановитель. Особенно четко потребность в восстановителе проявляется, если основным или единственным источником углерода для конструктивных процессов служит СО2 — предельно окисленное углеродное соединение. Для превращения углекислоты в структурные компоненты клетки и клеточные метаболиты необходимо ее восстановление до уровня углеводов, белков, липидов. Это же справедливо и при использовании в качестве источника углерода органических соединений более окисленных, чем вещества тела, например ацетата. [c.241]


    Зеленые растения осуществляют такой важнейший процесс биосинтеза, как фотосинтез, т.е. они обладают уникальной возможностью аккумулировать энергию солнечного света, переводя ее в энергию химических связей в результате образования углеводов из СО2 и НзО. Биосинтез на основе неорганических соединений, поступающих из окружающей среды, сравнительно простых органических соединений называется ассимиляцией. Клетки, в которых происходят эти процессы, образуют ассимиляционные ткани. Основная масса углеводов затем используется в биосинтезе компонентов древесины, а от 20 до 40% расходуется в процессе дыхания растения, окисляясь до СО2 и Н2О с выделением энергии. Считается, что ежегодно на Земле образуется и разрушается порядка 10 т материала растительных клеток (по некоторым данным от 150 до 200 млрд т), что эквивалентно энергии, на порядок превышающей годовое потребление энергии человечеством. Трудно переоценить значение этого глобального процесса биосинтеза, особенно с учетом того, что побочным продуктом фотосинтеза является кислород. [c.325]

    Липиды широко распространены в природе. Вместе с белками и углеводами они составляют основную массу органических веществ всех живых организмов, являясь обязательным компонентом каждой клетки. [c.25]

    Основным направлением биохимических изменений стационарных клеток является переключение метаболизма на эндотрофный обмен, синтезы резервных веществ, вторичных метаболитов и компонентов, повышающих устойчивость клеток к наступившим неблагоприятным для роста условиям (рис. 4.7). В этих условиях в клетке включается так называемый строгий ответ — сложный комплекс реакций, приводящих к резкому снижению синтезов РНК, нуклеотидов, углеводов, липидов, полиаминов, пептидогликана клеточной стенки, повышению деградации белка, ограничению мембранного транспорта. При этом повышается контроль трансляции белков и включаются синтезы сериновых протеиназ, участвующих в белковом процессинге превращения проферментов в их активные формы в результате отщепления некодирующей аминокислотной последовательности. [c.91]

    Немаловажное значение не только в изучении морфогенеза культурных растений, но и в биохимической оценке растений по величине и качеству урожая имеют количественные определения НК. В отличие от других основных химических компонентов прото(плазмы (белков, липидов и углеводов) НК локализованы только в структурах протоплазмы. Они целиком сосредоточены в сф ре активных метаболических процессов клетки. Их нет в структурах метаплазмы или в запасных отложениях. К тому же НК находятся в более или менее постоянном количественном отношении с общей массой протоплазмы. [c.21]

    Однако о лизосомах следует хотя бы кратко рассказать, ибо похоже на то, что им очень скоро предстоит занять вполне определенное место в общей картине клетки. Все ранее описанные клеточные компоненты в основном заняты, так сказать, созидательной деятельностью, будь то синтез углеводов (фотосинтез), белка, составных частей клеточной оболочки, клейкой слизи для ловли насекомых и т. д. Исключение составляют митохондрии — в них идет разложение глюкозы. Но ведь дыхание служит, собственно говоря, вовсе не для того, чтобы разлагать углеводы наоборот, углеводы разлагаются для того, чтобы получить АТФ, который синтезируется из АДФ и фосфата. Таким образом, формально функцию митохондрий можно определить как синтез АТФ. [c.253]

    У всех буферных систем крови преобладает основный (щелочной) компонент, вследствие чего они нейтрализуют значительно лучше поступающие в кровь кислоты, чем щелочи. Эта особенность буферов крови имеет большое биологическое значение, поскольку в ходе метаболизма в качестве промежуточных и конечных продуктов часто образуются различные кислоты (пировиноградная и молочная - при распаде углеводов метаболиты цикла Кребса и Р-окисления жирных кислот кетоновые тела, угольная кислота и др.). Все возникающие в клетках кислоты могут попасть в кровяное русло и вызвать сдвиг pH в кислую сторону. Наличие большой буферной емкости по отношению к кислотам у буферов крови позволяет им нейтрализовать значительные количества кислых продуктов, поступающих в кровь, и тем самым способствовать сохранению постоянного уровня кислотности. [c.113]

    Несмотря на то что каждому типу мембран присущи определенные липидные и белковые компоненты, основные структурные и функциональные особенности, обсуждаемые в этой главе, характерны как для внутриклеточных, так и для плазматических мембран. Прежде всего нам хотелось бы рассмотреть структуру и организацию главных компонентов всех биологических мембран - липидов, белков и углеводов. Затем мы обсудим механизмы, используемые клетками для транспорта малых молекул через плазматическую мембрану, а также способы поглощения и выделения клетками макромолекул и крупных частиц. В последующих главах будут проанализированы некоторые дополнительные функции плазматической мембраны роль в клеточной адгезии (гл. 14) и в сигнальных функциях (гл. 12). [c.349]


    В процессе пищеварения в желудочно-кишечном тракте млекопитающих три основных компонента пищи-углеводы, жиры и белки-подвергаются ферментативному гидролизу, распадаясь при этом на составляющие строительные блоки, из которых они образованы. Этот процесс необходим для утилизации пищевьк продуктов, поскольку клетки, выстилающие кишечник, способны всасывать в кровоток только относительно небольшие молекулы. Например, усвоение полисахари- [c.744]

    В первую очередь отметим роль углеводов в раститель-ом и животном мире как одного из основных компонентов астения в результате фотосинтеза из диоксида углерода и оды синтезируют и аккумулируют углеводы, которые в ви-е целлюлозы являются основным конструктивным элемен-ом, определяя геометрию и механические свойства расте-[ий, а в виде моно-, ди-, олиго-, полисахаридов (в первую 1чередь крахмала) вьшолняют функцию запасных веществ, [аиболее легко усвояемых, поставляющих энергию, необхо-(имую для обмена веществ в живой клетке [c.793]

    Основными биогенными элементами являются углерод, азот, фосфор, кислород, водород, сера. Это компоненты белков, углеводов и жиров, а также нуклеиновых кислот. Такие элементы требуются в значительных количествах (г/л) и поэтому их называют макроэлементами. К макроэлементам относят также калий, магний, натрий, кальций и железо, которые обычно присутствуют в клетках в виде ионов и выполняют разные роли. Например, необходим для активности большого числа ферментов, в частности ферментов белкового синтеза Са определяет устойчивость бактериальных эндоспор к нагреванию М стабилизирует рибосомы, многие ферменты и клеточные мембраны Ре и Ре являются частью цитохромов и кофакторами электронпереносящих белков. [c.71]

    Первичная атака Биохимические превращения ксенобиотика, доступного для ферментных систем клетки, начинаются с его первичной атаки. Последующая последовательная трансформация органического ксенобиотика в одно из соединений, вступающего затем в основные (центральные) пути катаболического или анаболического обмена, происходит в ходе так называемого подготовительного (периферийного) метаболизма. Микроорганизмы под воздействием ферментов переводят природные и синтетические вещества в так называемые ключевые соединения (фосфорилиробан-ные углеводы, пируват, глюконат, интермедиаты цикла трикарбоновых кислот, жирные кислоты, аминокислоты, пуриновые и пиримидиновые основания, пирокатехин и др.) - вещества, из которых синтезируются необходимые компоненты клетки и извлекается необходимая энергия. Превращение синтетического соединения с помощью ферментов, не относящихся к ферментам подготовительного метаболизма, - крайне редкое явление. [c.312]

    В электронном микроскопе клетки синезеленых водорослей имеют следующее строение (рис. 6). Клеточная стенка состоит из четырех четко разграниченных слоев, обозначаемых L , L , L4. Непосредственно кнаружи от цитоплазматической мембраны расположен электронно-прозрачный слой за которым следует электронно-плотный слой Lj, состоящий из муреина —основного компонента клеточной оболочки (стенки) бактерий. У эукариотических водорослей и грибов это вещество не обнаружено. Таким образом, и по химизму клеточной оболочки синезеленые водоросли, нередко называемые теперь синезелеными бактериями (цианобактериями), более близки к бактериям, чем к эукариотическим водорослям. Именно этот муреиновый слой Lj определяет прочность стенки. Будучи изолирован, этот слой клеточной стенки способен сохранять форму всей клетки. Следующие за муреиновым слоем слои — электронно-прозрачный 3 и мембраноподобный —образованы углеводами и в отличие от слоя L, гибкие, пластичные. [c.54]

    Липиды — природные соединения, обладающие гидрофобными свойствами. Они наряду с белками и углеводами составляют основную массу органического вещества живых клеток и тканей, присутствуют в животных, растительных и бактериальных клетках. В организме высших животных и человека содержание липидов в различных органах и тканях не одинаково. Наиболее богата липидами нервная ткань (20—25%). Липиды, являясь структурным компонентом мембранных липопротеи-дов, составляют не менее 30% общей сухой массы мембраны. [c.237]

    Известно, что в клетках различных организмов основная часть липидов присутствует в виде комплексов с белками — липопротеидов, которые разрушаются в процессе экстракции липидов различными органическими растворителями [петролейный эфир, хлороформ, диэтиловый эфир или смесь растворителей различной полярности, например хлороформ— метиловый спирт (2 1), этиловый спирт — диэтиловый эфир (3 2)]. При экстракции необходимо учитывать факторы, которые могут влиять на изменение структуры липидов температура, свет, кислород воздуха, действие липолитических ферментов и другие. Липиды способны растворять многие нелипидные компоненты (углеводы, аминокислоты, пептиды, мочевину и другие), а также образовывать с ними комплексы, что загрязняет липидные экстракты. Удаление этих примесей достигается промыванием липидного экстракта водой и насыщенными растворами минеральных солей или хроматографированием на колонках с различными адсорбентами. [c.187]

    Главные элементы, участвующие в фотосинтезе (С, Н, О), а также азот, сера и фосфор составляют основные строительные блоки тела растения. Например, клеточные стенки, формирующие скелет растения, состоят почти исключительно из углеводов и близких к ним соединений, содержащих С, Н и О. Белки, главные органические компоненты цитоплазмы, построены преимущественно из С, Н, О и N и небольшого количества 3. В состав нуклеиновых кислот, присутствующих в ядрах и в некоторых органеллах цитоплазмы, входят С, Н, О, N и Р. Липиды, содержащиеся в изобилии во всех мембранах, состоят преимущественно из С, Н и О, а также незначительного количества N и Р. Из 12 элементов, источником которых служит материнская порода, четыре используются растением главным образом для структурных целей. Сера является компонентом нескольких ами нокислот (цистеин, цистин и метионин)—структурных единищ из которых в конечном счете образуются белки. Хотя клеткам растения необходимо относительно малое количество серы, почти вся она выполняет важную структурную функцию. Без серу-содержащих аминокислот не могли бы синтезироваться многие важные белки клетки. Сера присутствует также в глутатионе,. широко распространенном веществе, который, как полагают, играет определенную роль в окислительно-восстановительных реакциях благодаря своей способности к обратимому превращению из восстановленной, или сульфгидрильной, формы (—5Н), в окисленную, или дисульфидную, форму (—-8—8т-),  [c.209]


Смотреть страницы где упоминается термин ОСНОВНЫЕ КОМПОНЕНТЫ КЛЕТКИ Углеводы: [c.133]    [c.205]    [c.298]    [c.91]   
Смотреть главы в:

Основы биохимии в 3-х томах Т 1 -> ОСНОВНЫЕ КОМПОНЕНТЫ КЛЕТКИ Углеводы




ПОИСК







© 2024 chem21.info Реклама на сайте