Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение полной концентрации солей

    Разделение и последовательное определение меди и никеля в растворе основано на различии напряжений разложения солей. Так, медь, стандартный потенциал которой (в паре Си +/Си) равен +0,34 в, восстанавливается на катоде значительно легче, чем никель, стандартный потенциал которого (в паре N +/N1) отрицателен ( ° = —0,23 в). При напряжении 2 в медь полностью осаждается на катоде даже из сильнокислых растворов, осаждение никеля в этих условиях не происходит. Для полного выделения никеля из раствора, оставшегося после выделения меди, необходимо не только повысить напряжение до 3—4 в, но и сильно понизить концентрацию Н+-ионов в растворе путем создания аммиачной среды. При этом Ы1 +-ионы превращаются в комплексные катионы [Ы1(ЫНз)4] +, остающиеся в растворе, а Ее +-ионы и некоторые другие катионы (если они присутствуют в растворе), не способные к образованию аммиачных комплексов, осаждаются в виде соответствующих гидроокисей и могут быть отделены фильтрованием. [c.444]


    ОПРЕДЕЛЕНИЕ ПОЛНОЙ КОНЦЕНТРАЦИИ СОЛЕИ [c.284]

    Определение полной концентрации солей [163] безотносительно к типу ионов — одна из первых областей применения ионитов. При пропускании анализируемого раствора через колонку с катионитом в Н+-форме в результате обмена катионами высвобождается эквивалентное количество ионов водорода, которое можно определить методом алкалиметрии. [c.284]

    Приведенная вязкость бессолевых водных р-ров П. при понижении концентрации возрастает (см. рис. 1, кривая 1). Однако в области очень малых концентраций при малых скоростях сдвига зависимость приведенной вязкости от концентрации П. проходит через максимум, к-рый соответствует состоянию предельно набухшего полииона. Эти эффекты м. б. исключены двумя путями 1) измерение вязкости в р-рах, содержащих сравнительно высокие концентрации низкомолекулярных солей ( 0,1 М), когда вкладом макромолекулярного компонента в ионную силу р-ра можно пренебречь (см. рис. 1, кривая 2) 2) разбавление р-ра П. р-рами электролитов такой концентрации, чтобы ионная сила оставалась равной ионной силе исходного р-ра П. ( изоионное разбавление ). Такое разбавление обусловливает линейную зависимость приведенной вязкости от концентрации. Для определения ионной силы разбавителя необходимо знать, какой вклад в ионную силу р-ра дает макромолекулярный компонент, что не всегда возможно. Поэтому концентрацию разбавителя обычно устанавливают опытным путем. При разбавлении бессолевых р-ров П. обычно используют р-р (1 1)-ва-лентного электролита, нормальность к-рого равна половине нормальности р-ра П., что соответствует неизменной полной концентрации подвижных ионов. С увеличением ионной силы р-ра [т]] падает, что обусловлено уменьшением размеров полииона вследствие экранирования его фиксированных зарядов (см. рис. 1). [c.49]

    Определение солей основано на вытеснении сильными электролитами слабых электролитов, образующих соли. Поэтому определение солей, образованных катионами сильных оснований и анионами сильных кислот, невозможно. В анализе используют реакции вытеснения слабой кислоты сильной кислотой или слабого основания сильным основанием. Если соль образована катионом слабого основания и анионом слабой кислоты, можно использовать обе реакции. Скачок на кривой титрования обуславливается силой слабых электролитов, образующих соль, и ее концентрацией. Когда оба электролита, образующие соль, слабые, на скачок оказывают влияние константы диссоциации как кислоты, так и основания. При математическом описании процесса титрования принята полная диссоциация солей. [c.36]


    При охлаждении оптическое поглощение понижается до более низкого значения, причем окончательная величина ма с зависит от скорости охлаждения и ионной силы. При этом полной обратимости обычно не наблюдается, а величина оптического поглощения у ДНК, полностью денатурированной нагреванием, составляет 70—80% (а не 60%) от вычисленной величины, т. е. емакс приблизительно равна 7500—8500 [264, 266]. Вследствие того, что это увеличение оптической плотности происходит при тепловой денатурации, кривые для критических температур денатурации могут быть также получены путем нагревания растворов ДНК в течение 1 час с последующим охлаждением до комнатной температуры и определением оптического поглощения, хотя этот метод и менее изящен [264[. Тем не менее в ранних работах, в которых использовался этот метод, было показано, что дезоксирибонуклеиновые кислоты из различных источников (зобная железа теленка, лягушка и оболочка морской звезды) различаются по своей чувствительности к нагреванию и что увеличение концентрации соли (от 10"- М до 1 М хлористого натрия) оказывает защитное влияние против денатурации при 100°. С полной очевидностью было показано-также, что при температурах вплоть до температуры денатурации оптическая плотность ДНК остается постоянной [264[. [c.585]

    Концентрация анионов может меняться вследствие либо увеличения концентрации соли уранила, либо добавления другого соединения того же аниона, например соли щелочного металла или свободной кислоты. Лучше всего исследование проводить методом замещения, поддерживая постоянную полную ионную силу и кислотность. Необходимо также принимать определенные меры для поддержания интервала pH, в котором ионы уранила не подвергаются каким-либо гидролитическим изменениям, описанным в разд. 1. Этих мер предосторожности в ранних работах не предпринимали. С этими работами мы и познакомим читателя. [c.112]

    В свете сказанного становится ясным, что отложение солей в определенной зоне испарительной трубы вызвано именно полным упариванием микропленки. Оно наблюдается в границах паросодержаний и (ближе к где концентрация солей выше). Отсутствие накипеобразования в тех участках трубы, где объясняется, по-видимо- [c.61]

    Контактный способ измерения электропроводности был использован для автоматического контроля химического состава и регулирования процессов производства- в различных отраслях промышленности в сульфитно-спиртовой и гидролизной промышленности [143], в отделочном производстве [144], производстве радиоактивных материалов [145, 146], лаков и красок 147]. Предложены автоматические промышленные кондуктометрические анализаторы контактного типа для контроля концентрации солей в турбинном конденсате, дистилляте, перегретой воде и насыщенном паре паросиловых установок [148], в выпарных аппаратах [149], на автоматических станциях полного обессоливания [150], в гидрометаллургических процессах [146] для непрерывного определения ацетальдегида [62], следов СО в газах [151, 152], содержания углерода, водорода и азота [153], уксусной кислоты и аммиака [154], химикатов в сточных водах [155] контроля ионообменных процессов в установках обессоливания [156] аммиака [157] и двуокиси углерода в воздухе [56] и т. д. [c.55]

    Точно приготовленные растворы из чистых химических веществ могут не оказывать такого же действия, как растворы, встречающиеся в реальных условиях, поскольку искусственно составленные смеси обычно содержат другие соединения или примеси, которые оказывают существенное влияние на процесс коррозии. Это прежде всего относится к искусственной морской соли, которая обычно менее коррозионноактивна, чем естественная морская вода. Состав искусственной морской соли, применяемой в различных странах, дан в табл. 10.2. Предполагаемые примеси могут быть добавлены к чистому раствору в соответствующих количествах, или, еще лучше, растворы для испытаний могут быть взяты прямо с заводов, где производят эти соли. Следует иметь в виду, что при исследовании влияния химических реагентов и особенно кислот на коррозионную активность раствора необходимо как можно более полно охватить возможный диапазон изменения их концентрации, поскольку часто случается, что определенные пределы концентраций особенно [c.552]

    В последнее время на силовых станциях США применяются три типа миниатюрных установок для удаления газов и воздуха [24]. Они обеспечивают полное удаление газов, а дегазированный конденсат пригоден для определения в нем солей, уносимых паром из котла. Приближенная величина общей коррозии пароперегревателя во время работы котла может быть получена определением разности концентраций водорода в пробах пара, взятых до и после прохода его через пароперегреватель. [c.553]


    Результаты проведенных исследований схематически представлены на рис. 10. Необходимо выделить следующие особенности влияния компонентного состава на эксплуатационные свойства эмульсий. Очень высокий показатель pH (5 и выше) - может привести к получению неустойчивых катионных эмульсий, т.к. стабильность битумных эмульсий определяется практически полной ионизацией аминопроизводного, что имеет место при pH ниже 4.5. Использование стабилизатора снижает вязкость при высоком содержании солей в битуме, а высокая концентрация стабилизатора может привести к ухудшению адгезии. В определенных температурных пределах (30-50°С) устойчивость эмульсии повышается. [c.34]

    Другую группу составляют сильные электролиты. Экспериментальное определение степени диссоциации таких электролитов дает неоднозначные величины. Закон действующих масс для сильных электролитов неприменим. Объяснить их свойства по теории Аррениуса невозможно. Для объяснения свойств растворов сильных электролитов было выдвинуто предположение об их полной диссоциации при любых концентрациях и о значительном взаимодействии образовавшихся ионов между собой. Силы межионного взаимодействия зависят от расстояния между ионами и убывают до нуля при бесконечном разбавлении раствора. Сильными электролитами являются водные растворы большинства солей, а также некоторых кислот и оснований. [c.204]

    Ступенчатые константы, использованные при определении остаточного эффекта в системах аммиачных и этилендиаминовых комплексов, относятся соответственно к 2 н. раствору нитрата аммония и 1 н. раствору хлорида калия. В этой связи следует отметить, что не очень существенно, при какой ионной силе определяли применяемые констаиты, так как ступенчатые константы изменяются с концентрацией соли незначительно и для одной и той же системы комплексов одинаково, В экспери- у1ентальной части настоящего исследования это показано измерениями IB 0,5, 2 и 5 н. растворах нитрата аммония. Ни одна из ступенчатых констант не приведена в табл. 4. Вместо этого дана константа устойчивости Км, согласно уравнению (2), для. 2 н. раствора нитрата аммония и 1 н. раствора хлорида калия при 30° в случае систем комплексов ртути (II) и магния — при комнатной температуре. Данные, приведенные для системы аммиачных соединений меди (I), а также полный эффект для системы комплексов меди (II) вычислены на основе предыдущих исследований автора [I, II, III]. Все остальные данные основаны на измерениях настоящей работы. [c.58]

    Горячие соли. Общепринято, что, хотя чистый титан и устойчив против высокотемпературного солевого коррозионного растрескивания, большинство сплавов проявляют некоторую степень чувствительности к КР- Влияние состава и термической обработки особенно полно не аргументировано, однако могут быть сделаны следующие качественные наблюдения. В работе [166] использованы гладкие плоские образцы для определения чувствительности к КР серии бинарных сплавов в среде воздух—хлор при 427 "С. Было показано, что наиболее вредными элементами, которые способствуют растрескиванию при наименьших концентрациях, были А1, Sn, Си, V, Сг, Мп, Ре и Ni. Элементами, требующимися в больших концентрациях для активизации растрескивания, были Zr, Та и Мо. В большинстве опубликованных классификаций указывается, что а-сплавы имеют тенденцию к большей [c.373]

    Реакция обратима. Для полного восстановления У (У) доУ(1У) необходимо поддерживать высокую концентрацию НС1. В водных растворах солей, подкисленных серной кислотой, ванадий легко восстанавливается амальгамой висмута до У(1У), магнием — до У(1И) и цинковой амальгамой— до У(И). Некоторые приемы восстановления, сопровождаемые последующим окислением восстановленных растворов ванадия титрованным раствором КМпО , были предложены для количественного определения У. [c.9]

    Для получения эталонных растворов 0,5 г препарата помещают в платиновый тигель, вводят различные количества соли натрия до концентрации в конечном объеме 0,01—0,3% мае. по отношению к фториду магния, прибавляют 10 мл боратного растворителя и осторожно нагревают до полного растворения. Растворы переносят в мерные колбы вместимостью 50 мл и разбавляют водой до метки. Для определения натрия эти растворы разбавляют водой в 10 раз. [c.128]

    Через анализируемый соляно- или азотнокислый раствор, содержащий 0,5—10 мг/мл плутония, пропускают сернистый газ в течение 5—-10 мин. Раствор выдерживают 15—20 мин. для полного восстановления плутония до трех-валентного состояния. Концентрацию кислоты в растворе поддерживают равной 0,5—1,5 М. 2,5—3 мл восстановленного раствора помещают в кювету с толщиной слоя 10 мм и Измеряют оптическую плотность при 560 и 600 ммк. Концентрацию плутония рассчитывают по формуле (1). Относительная ошибка определения составляет 0,5%. [c.153]

    Основные трудности, которые пока препятствуют более широкому применению химического никелирования, это изменение состава раствора во время работы, в результате чего уменьшается концентрация солей никеля и гипофосфита, накопление фосфита никеля и выпадение его в осадок, что вызывает возрастание кислотности раствора и снижение скорости выделения никеля вплоть до полного прекращения процесса. Если не принимать специальных мер по корректированию и регенерации раствора для никелирования, то после каждой загрузки его следует заменять свежим. На каждый грамм осажденного никеля расходуется 5—6 г гипофосфита. На некоторых заводах [389] Б ванну добавляют определенное количество 1,5%-ного раствора NaOH через каждые 20—25 мин. работы. Для получения толстых покрытий (25 мк и выше) никель осаждают последовательно в нескольких ваннах. [c.110]

    Долго дсбати )ова81лийся вопрос о роли частиц морской соли как ядер конденсацпи в атмосфере теперь решен. Общее число частиц морской соли слишком мало, чтобы иметь какое-либо значение для образования облачных капель. Это отчетливо показано в табл. 32, где даны полные концентрации, определенные различными наблюдателями. Частицы размером более [c.191]

    Имеется много патентов [131 на способы разрушения эмульсий Н/В при помощи кислот. Исследования Шеррика, изучавшего адсорбцию водородных ионов, происходящую при добавлении кислот к нефтяным эмульсиям, показали, что для полного деэмульгирования нужна определенная концентрация водородных ионов. Но эффективности действия кислоты можно расположить в следующий ряд НС1 > H2SO4 > GH3 OOH. Он также обнаружил, что при использовании хлорного железа происходит адсорбция ионов, в результате чего эмульсия разделяется на два слоя. В некоторых случаях эмульсии нефти в воде хорошо разрушаются при добавлении солей с двух- и трехвалентными катионами (хлористый кальций, хлористый алюминий). [c.45]

    Если концентрация соли ВА в растворе равна нулю, то катионит можно также титровать щелочью. Это в том случае, когда зерна катионита помещены в дистиллированную воду. Характер кривой титрования при этом другой, чем при титровании в растворе соли. В этом случае гидроксил-ион практически количественно нейтрализуется ионами водорода (гидроксония), выходящими из зерен катионита, а ионы В+ из раствора переходят в зерна катионита. Когда этот процесс заканчивается, электропроводность раствора резко возрастает, так как в растворе появляется избыток гидрокоил-ионов. Наиболее полную качественную характеристику функциональных групп, присутствующих в ионите, дает определение кривых потенциометрического титрования. [c.144]

    Если бы в нашем распоряжении имелись данные для достаточного числа олигомеров, можно было бы написать систему уравнений для определения констант, характеризующих все десять возможных взаимодействий ближайших соседей. Однако на основании имеющихся в настоящее время данных получить полное рещение этой задачи нельзя, хотя эта область быстро развивается. В табл. 23.4 суммированы наиболее надежные из имеющихся данных для параметров, характеризующих отдельные взаимодействия. Отметим, что ДСрр(,. зависит от концентрации соли и температуры, и для сравнения данных для двух олигомеров в соответствии с уравнением (23.26) нужна экстраполяция к одинаковым условиям. Для такого сравнения были выбраны стандартные условия 25°С, 1 М Ка+. [c.323]

    Применение органических осадителей требует создания определенных услови1[ и прежде всего надлежащей величины pH раствора. Причину этого понять нетрудно. Выше указывалось, что при образовании внутрикомплексных солей происходит замещение водорода кислотной группы реагента ионами металла при этом в раствор переходят ионы водорода, как это следует, например, из приведенного выше уравнения реакции между N1 + и диметилглиоксимом. Ясно, что положение равновесия должно зависеть от концентрации Н" , т. е. от величины pH раствора. Диметил-глиоксим (и другие подобные ему органические реагенты) ведет себя как слабая кислота. Поэтому к рассматриваемой реакции применимо все то, что говорилось ранее о значении величины pH при осаждении малорастворимых солей слабых кислот. И здесь, если известна величина ПР осадка и константа кислотной ионизации реагента, можно вычислить величину pH, при которой достигается полное осаждение. [c.125]

    Исследования Шеррика [16], изучавшего адсорбцию водородных ионов, происходящую при добавлении кислот к нефтяньш эмульсиям Н/В, показали, что для полного разрушения их нужна определенная концентрация водородных ионов. По эффективности действия кислоты можно расположить в следующий ряд НС1>Н5 804 >СНзСООН. В некоторых случаях эмульсия Н/В разрушается при добавлении солей с двух- и трехвапентными металлами, такими как хлориды железа, алюминия, кальция и др. [c.37]

    Полученные в результате хим. синтеза К.с. обычно мало пригодны для непосредств. применения в крашении и особенно в печатаний. Чтобы красители были удобны в применении и для повышения степени их использования (напр., исключение мех. потерь, более полная выбираемость нз красильных ванн) нз иих готовят выпускные формы. Это стандартизов. товарные формы, в к-рых К. с. поступают потребителям кроме красителя, взятого в строго определенной концентрации, в их состав входят разл вспомогат. в-ва. Осн. выпускные формы непылящие порошки, содержащие краситель, ингибитор пыления (напр., авиац. или трансформаторное масло, силоксановая жидкость либо дибутилфталат в кол-ве обычно ок. 1,5%), диспергатор, смачиватель (для нерастворимых в воде), соль минер, к-ты-обычно [c.495]

    В оптимальных условиях экстракции Sb(V) с применением кристаллического фиолетового (при его исходной концентрации в водной фазе 1,66-10 М) краситель, находящийся в этих условиях в виде двух форм — мономерной (Ятах = 591 нм) и димерной (Ятах = 540 нм), образует с Sb la ионный ассоциат, бензольные экстракты которого также характеризуются двумя максимумами поглощения — при 610 и 550 нм [327]. Некоторое смещение максимумов поглощения объясняется явлением сольватохромии [361]. Однако при извлечении ионного ассоциата растворителями с более высокой диэлектрической проницаемостью, чем у бензола (хлорбензол, хлороформ, дихлорэтан и т. п.), и смесями бензола с высокополярными растворителями в спектрах экстрактов наблюдается только один максимум, принадлежащий мономерной форме красителя, т. е. наблюдается явление, обратное установленному для самих красителей. Таким образом ведут себя и другие красители, в том числе метиловый фиолетовый, бриллиантовый зеленый, малахитовый зеленый. Получение экстрактов с одним максимумом существенно увеличивает оптическую плотность экстракта. Таким образом, добавление к бензолу нитробензола, дихлорэтана и других высокополярных растворителей или использование только этих растворителей приводит к дезагрегации красителей, входящих в состав ионных ассоциатов. Растворители с диэлектрической постоянной > 10 (нитробензол, спирты, нитрилы, альдегиды и т. п.) в качестве экстрагентов для экстракционно-фотометрического определения Sb(V) непригодны, так как сильно извлекают солянокислые соли самих красителей. Для экстракции ионных ассоциатов, образуемых Sb lg с катионами трифенилметановых красителей, рекомендуется применять растворители с диэлектрической проницаемостью в пределах 4,8— 10,0 [327]. Эти растворители (хлорбензол, смеси бензола с нитробензолом или с дихлорэтаном) экстрагируют Sb(V) полнее, и получаемые экстракты характеризуются значительно большими молярными коэффициентами погашения. Добавление к бензолу циклогексанона и других кетонов, наоборот, уменьшает оптическую плотность экстрактов. Это объясняется тем, что кетоны хорошо извлекают Sb в виде HSb le, присоединяясь к ней с образованием соответствующих неокрашенных сольватов [393]. [c.46]


Смотреть страницы где упоминается термин Определение полной концентрации солей: [c.373]    [c.109]    [c.741]    [c.206]    [c.60]    [c.49]    [c.42]    [c.448]    [c.58]    [c.10]    [c.439]    [c.176]    [c.430]    [c.77]    [c.71]    [c.193]    [c.450]    [c.46]    [c.227]   
Смотреть главы в:

Лабораторное руководство по хроматографическим и смежным методам Часть 1 -> Определение полной концентрации солей

Лабораторное рук-во по хроматографическим и смежным методам Ч 1 -> Определение полной концентрации солей




ПОИСК





Смотрите так же термины и статьи:

Концентрация определение



© 2025 chem21.info Реклама на сайте