Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сверхновая звезда

    Возникновение самых тяжелых элементов — урана, тория, трансурановых элементов — происходит при взрыве сверхновых звезд. При таком взрыве высвобождается колоссальная энергия и температура достигает порядка 4 млрд. градусов, что позволяет осуществиться реакциям образования самых тяжелых элементов. [c.666]

    Элементы вплоть до висмута образуются и недрах звезд-гигантов за счет поглощения ядрами нейтронов н испускания р -частиц. При взрыве сверхновых звезд высвобождается колоссальная энергия (температура достигает порядка 4 млрд. градусов) и возникают ядра и нейтроны высокой энергии, обусловливающие сннтез ядер самых тяжелых элементов за счет чередующихся циклов поглощения нейтронов и Р"-распада. Предполагается, что первоначальное вещество Солнечной системы содержало элементы тяжелее урана. [c.16]


    Изотоп калифорния найден в атмосфере сверхновых звезд [c.74]

    Дальнейшая судьба химических элементов определяется развитием звезды. После образования элементов группы железа возможно сильнейшее гравитационное сжатие вещества звезды, при котором может со скоростью взрыва произойти почти полный распад образовавшихся элементов на гелий и нейтроны энергия, необходимая для такого распада, поставляется гравитационными силами. Внешние оболочки звезды, состоящие в основном из легких элементов, разогреваются, что может привести к термоядерному взрыву громадной мощности, при котором в окружающее пространство выбрасывается огромное количество материи. Описанный процесс представляет собою явление, называемое взрывом сверхновой звезды. Выброшенное при взрыве сверхновой звезды вещество образует межзвездный газ — основной материал для формирования холодной материи Вселенной, а главное, для так называемых звезд второго поколения. [c.65]

    Хнм состав космич в-ва формируется в осн в равновесных и неравновесных ядерных процессах, протекающих в недрах звезд и прн взрывах сверхновых звезд Он харак- [c.485]

    Совершенно исключительное явление во Вселенной представляют собой Новые и Сверхновые звезды. Еще Гиппарх две тысячи лет назад наблюдал появление на небе новой яркой звезды в том месте, где раньше ничего не было видно. С тех пор такие звезды наблюдались неоднократно. Позднее, когда стали применять мощные телескопы, было установлено, что это явление вовсе не связано с рождением новой звезды. На самом деле звезда очень слабой светимости внезапно увеличивает свою светимость в десятки тысяч раз, а затем через какой-то промежуток времени (величина его различна для отдельных звезд) снова превращается в слабую звезду с прежней светимостью. При вспышке новой звезды происходит резкое увеличение темпера- [c.54]

    Наблюдения показали, что Сверхновые звезды окутаны большими светлыми облаками неправильной [c.56]

    Вспышки Сверхновых звезд и процесс быстрого присоединения нейтронов [c.131]

    После обнаружения этого очень интересного факта возникла идея о том, не может ли процесс быстрого присоединения нейтронов протекать в условиях звезд, особенно при их вспышках. На помощь вновь пришли данные астрофизиков. Наблюдения над вспышкой Сверхновой в спиральной туманности NG 4725 в 1940 г. показали, что ее светимость в течение примерно 600 дней спадала по экспоненциальному закону с периодом полураспада 55 дней, хотя большая часть энергии испускалась в первые пять дней (рис. 44). Затем по истечении 600 дней светимость в продолжение многих лет изменялась незначительно. В настоящее время установлено, что общая энергия, выделяемая при вспышках Сверхновых звезд такого типа, составляет 10 эрг. Однако основная часть этой энергии выделяется в первые дни. Энергия, обусловленная экспоненциальным уменьшением светимости, равна 10 эрг. [c.132]


Рис. 44. Зависимость светимости Сверхновой звезды от времени Рис. 44. Зависимость светимости <a href="/info/221033">Сверхновой звезды</a> от времени
    В настоящее время еще окончательно не решен вопрос о природе ядерных реакций, которые приводят к вспышкам Сверхновых звезд. Один из вариантов теорий вспышки Сверхновой можно представить следующим образом. Рассмотренные выше равновесные процессы, приводящие к синтезу элементов группы железа, являются, как правило, экзотермическими. Так как равновесные реакции протекают за очень короткое время, то и тепло, выделяемое в них, может очень быстро увеличить температуру вещества промежуточного слоя, которое состоит из легких элементов. В этом слое протекают термоядерные процессы типа углеродно-азотного и натриево-неонового циклов. [c.134]

    Сейчас пока еще нет сведений о распространенности различных элементов в Сверхновых звездах перед их взрывом. Со времени постройки мощных телескопов в нашей Галактике не удалось еще зафиксировать ни одной вспышки Сверхновых звезд, а получать сведения о химическом составе таких звезд, вспыхнувших в далеких галактиках, очень трудно. Имеются только спектральные данные о составе Крабовидной туманности, которая, как уже указывалось, является остатком после взрыва Сверхновой в 1054 г. Обнаружены четкие линии кислорода, неона, гелия и очень слабые линии водорода. [c.138]

    Следует также иметь в виду, что сейчас наблюдают два основных типа Сверхновых звезд, природа которых различна. Мы рассматривали возможные ядерные процессы для Сверхновых типа I, которые вспыхивают в центральных частях спиральных и эллиптических галактик. В этих Сверхновых взрыв происходит, по-видимому, только в оболочке звезды, и сравнительно небольшая масса звезды выбрасывается с большой скоростью, образуя туманность, подобную Крабовидной туманности. При вспышках Сверхновых типа П выделяется энергия в тысячу раз большая, чем при вспышках Сверхновых типа I. Причины взрыва таких звезд еще неясны, но они, по-видимому, сопрово- [c.138]

    Из рис. 42 видно, что после взрыва наступает сильное охлаждение звезды она сжимается до очень малых размеров, так как в ней нет больше источников ядерных реакций. Сжатие продолжается до тех пор, пока бывшая звезда-гигант не превратится в белый карлик с чрезвычайно большой плотностью. Белые карлики, по-видимому, образуются и после ряда вспышек одних и тех же Новых звезд. Наблюдения подтверждают, что на месте взрыва Новых и Сверхновых звезд всегда можно обнаружить маленькую звезду слабой светимости. Тем самым создавалось впечатление, что от каждой звезды, закончившей свой жизненный путь, остается звездный труп . Но исследования последних лет показали, что это не так. Из этих тру- [c.139]

    В этой, последней главе мы попытаемся рассмотреть эволюцию атомов химических элементов, которые выбрасываются при вспышке Сверхновых звезд. Следует отметить, что по этому вопросу еш е очень мало данных. Однако благодаря усилиям ученых, работающих в различных областях знаний, с каждым годом мы получаем все больше доказательств того, что атомы претерпевают различные превращения даже в таких космических телах, в которых не протекают интенсивные ядерные процессы. [c.141]

    Вспышки Сверхновых звезд — источники космических лучей [c.142]

    Первая гипотеза о происхождении космических луг чей была высказана Р. Милликеном еще в то врем когда общепринятым было представление об их аналогии с электромагнитным излучением. Милликен предположил, что космические лучи образуются в реакциях синтеза ядер гелия из четырех протонов в космическом пространстве. После установления природы космических лучей эта гипотеза была отвергнута. Взамен ее предлагались другие гипотезы, но только теория, развиваемая в последние годы советскими физиками В. Л. Гинзбургом и И. С. Шкловским, представляет существенный интерес. Согласно этой теории, космические лучи образуются в основном при вспышках Сверхновых звезд. Известно, что при этих вспышках из оболочек красных гигантов выбрасывается огромное количество атомных ядер. Их число предполагается равным около 10 частиц на одну вспышку. [c.142]

    Следует также отметить, что решающее значение для подтверждения гипотезы образования космических лучей при вспышках Сверхновых звезд имеет факт обнаружения в туманностях, остатках этих звезд, дискретного радиоизлучения. Сейчас установлено, что Крабовидная туманность — это мощный источник радиоизлучения. Сверхновая Тихо Браге, остатки которой пока еще не удалось обнаружить с помощью оптических телескопов, была найдена только по радиоизлучению. Природа космического дискретного радиоизлучения оставалась долгое время непонятной, пока И. С. Шкловский не высказал предположение о том, [c.142]


    В связи с тем, что в звездах аналогичного типа перед их вспышками еще много водорода, то его относительное содержание в межзвездном газе или в очень разреженных туманностях велико. Много водорода и в веществе, которое выбрасывается при вспышках Новых звезд. Правда, при этом выбрасывается значительно меньше вещества, чем при вспышках Сверхновых звезд, но вспышки их происходят очень часто. Поэтому за время существования нашей Галактики большое количество вещества было выброшено при вспышках Новых звезд. Выброс вещества в галактическое пространство, кроме того, происходит и на ранних стадиях существования горячих голубых звезд, состоящих в основном из водорода. Долгое время оставался неясным вопрос об образовании пыли в космическом пространстве. В настоящее время существует мнение, что она образовалась путем конденсации молекул газообразных веществ—метана, аммиака и других. [c.145]

    Мы уже указывали на то, что после вспышек Новых и Сверхновых звезд основная их масса превращается в белые карлики — плотные звезды малых размеров. Они состоят в основном из ядер тяжелых элементов, м поэтому ядерные реакции синтеза элементов в них не протекают. Их атомы, безусловно,так же, как и в холодных телах, подвергаются радиоактивному распа-.ду и другим ядерным реакциям, приводящим к их постепенному разрушению. Но не эти процессы, по-видимому, определяют судьбу ядер химических элементов в белых карликах. [c.165]

    Планеты нашей Солнечной системы образовались, по-видимому, из дискообразного облака горячих газов, остатков взрыва сверхновой звезды. Сконденсировавшиеся пары образовали твердые частицы, объединившиеся в небольшие тела (планете- [c.16]

    Одновременно с протеканием описанных выше ядерных реакций не перестает видоизменяться облик звезды, и в зависимости от массы звезд их дальнейшая судьба различна. К числу самых необычайных явлений относится взрыв сверхновой звезды. На определенной стадии эволюции в центре [c.19]

    Полагают также, что и в галактическом диске Млечного пути, к которому принадлежит наша Солнечная система, элементы, первоначально рассеявшиеся в космическом пространстве при взрыве сверхновых звезд, повторно сгруппировались и стали первичным веществом неподвижных звезд. На рис. 1.3 схематически изображен этот процесс. Водород и прочие частицы находятся в космосе в газообразном состоянии и содержатся в чрезвычайно малой концентрации, при этом следует отметить, что на долю протонов приходится почти всей массы звезды. Возникающие между частицами такого разреженного газа флуктуации плотности развиваются, усиливаются и приводят к скоплениям, обладающим высокой плотностью. Часть их эволюционирует до неподвижных звезд, освободившаяся в результате сжатия энергия гравитации превращается в тепловую энергию, и температура внутренних областей сильно возрастает. Когда температура достигнет 10 К, начинаются процессы, изображенные уравнениями (1.1) —(1.3). Образующаяся при этом энергия испускается в пространство, проявляясь в виде непрерывного яркого свечения. В системе Млечного пути можно во множестве наблюдать различные фазы описанного цикла. В звездах, отличающихся от звезд главной после- [c.20]

    Советский физик Л. Д. Ландау рассчитал, что возможны условия, при которых электроны могут вжиматься даже в атомные ядра. Соединяясь там с протонами, они превращают их в нейтроны. В результате вещество должно перейти в нейтронное состояние. Есть основание полагать, что переход вещества в нейтронное состояние может быть одной из стадий, предшествующих грандиозным звездным взрывам — вспышкам сверхновых звезд. При еще более сильном сжатии наряду с нейтронамл должны возникать и еще более тяжелые частицы — гипероны, т. е. вещество переходит в гиперонное состояние. [c.157]

    Можно предположить, что планеты Солнечной системы образовались из солнечной материк, ьыброшенной, когда Солице сга-новилось сверхновой звездой. Охлаждение образовавшейся вокруг Солнца дискообразной газовой туманности создало возможность для соединения атомов в молекулы, т. е. началась химическая эволюция. Молекулы не могли образоваться при звездных температурах, когда большинство атомов суш,ествует в виде многозарядных ионов (например, в Солнечной короне при 10 К атомы железа явл.чются ионами Ре +, а рения даже Re ). Двухатомные молекулы обнаружены в спектрах наиболее холодных звезд с температурой поверхности 2000—3000 К это А10, MgO, ТЮ, 2гО, СО, 510 и некоторые другие с наиболее прочной химической связью. [c.10]

    Оставляя в стороне грандиозные масштабы событий, предшествовавишх генезису метагалактики, т. е. собрания бесчисленных галактик известных сейчас астрономам, укажем, что наша галактика возникла, как полагают, в виде собрания многочисленных сгущений первоначально газообразной материи, т. е. раскаленных звезд (их насчитывают примерно 10 ), не позже, чем 20 млрд. лет тому назад. Солнце считают сравнительно молодым членом галактики — звездой примерно четвертого поколения три предка его, существовавших в галактике, в свое время один за другим взорвались, проходя стадию сверхновой звезды и рождая при этом атомы тяжелых элементов, а сами превращаясь в раскаленное газовое облако. [c.374]

    Имеются веские основания считать, что быстрый спад светимости ряда сверхновых звезд, который во всех случаях подчиняется одной закономерности после быстрого достижения максимума светимость далее уменьшается вдвое за каждые 55 дней,— связан с радиоактивным распадом какогб- [c.65]

    Вспьпики Новых и Сверхновых звезд [c.54]

    Одно из самых грандиозных и необычайных явлений природы — вспышки так называемых Сверхновых звезд. Первые описания таких явлений мы находим в древних китайских и арабских летописях. Так, в китайской летописи Вень-Сянь-Тин-Као за 185—186 гг. нашей эры можно найти следующие интересные строки В эпоху Чжун-пина, на второй год, в десятую Уну, в день Квейхая появилась необыкновенная Звезда Нан-Мана. Она была величиной с бамбуковую Чиновку и последовательно показывала пять цветов. -Постепенно уменьшала она блеск к шестой луне сле- [c.55]

    Изучение китайских, японских, индийских, арабских и других летописей за последние две тысячи лет показало, что описание необыкновенных звезд встречается всего пять-шесть раз. Это свидетельствует о чрезвычайной редкости вспышек Сверхновых звезд. В среднем в каждой галактике вспыхивает по одной такой звезде раз в триста лет. За последние 500 лет в нашей Галактике наблюдалось только две вспышки Сверхновых звезд. Первая вспыхнула в 1572 г. в созвездии Кассиопея и была зарегистрирована датским астрономом Тихо Браге. Вторая Сверхновая звезда появилась в созвездии Змееносца в 1604 г., она была обнаружена И. Кеплером. Сверхновые звезды вспыхивают внезапно, при этом светимость звезды, которая до вспышки была еле заметна даже в самые сильные телескопы, увеличивается во много миллионов раз, превышая светимость Солнца в 10 —10 ° раз. После вспышки светимость начинает постепенно уменьшаться, но ее падение происходит не одинаково для всех Сверхновых звезд. Оказывается, что у некоторых Сверхновых наблюдается очень быстрый спад их светимости в течение первых дней существования, а затем он замедляется и происходит далее строго по экспоненциальному закону, подобно тому как спадает радиоактивность. Уменьшение вдвое светимости некоторых Сверхновых звезд происходит в течение 55 дней. Этот факт, как мы увидим ниже, имеет большое значение для выявления процессов, приводящих к вспышкам Сверхновых, а также для выяснения вопроса о происхождении химических элементов. [c.56]

    Сверхновые звезды и туманности, остающиеся на месте вспышки, и являются источниками космических лучей в течение очень длительного времени. Это обусловлено тем, что образовавшиеся туманности имеют магнитные поля. Магнитное поле обнаружили в Крабовидной туманности. Выброшенные со скоростью в несколько тысяч километров в секунду атомные ядра ускоряются в магнитном поле туманности до больших энергий. Расчеты показывают, например, что в условиях Крабовидной туманности однозаряженные частицы могут ускоряться до энергий свыше 3 10 " эв. [c.142]

    Интенсивность лучистой энергии, приходящей на Землю, может увеличиваться и за счет вспышек Новых и Сверхновых звезд в области, близкой к Земле. За время существования Земли, она,по-видимому, около десяти раз испытала мощную бомбардировку космическими лучами, вызванными вспышками только Сверхновых звезд. Эти лучи, безусловно, оказали значительное в.пияние на многие земные явления. Предполагается, например, что они резко воздействовали на живые организмы и привели к изменению их видов. Весьма вероятно, что именно воздействием космических лучей объясняется внезапное вымирание огромных земноводных ящеров около 200 млн. лет назад. До сих пор это событие приписывалось последствиям [c.154]

    У Сверхновых же типа П, масса которых порядка 10 солнечных масс и даже выше, образование нуклонных пар может происходить еще до достижения ядерной плотности при этом количество нуклонных пар во, много раз превышает исходное количество вещества из-за их множественного образования. Выбрасываемое при вспышке вещество должно состоять преимущественно из эпиплазмы- Основным процессом при расширении вещества является аннигиляция нуклонных пар, сопровождающаяся жестким излучением, и только очень малая доля энергии переходит в свет. Поэтому мы и не мо кем обнаружить остатки Сверхновых звезд типа I при помоищ телескопа. [c.167]

    Проблемы спокойной эволюции звезд мастерски изложены в монографии Физические процессы внутри звезд . Д.А. Франк-Каменецкий также решил задачу о том, как при взрьше звезды ударная волна усиливается во внешних слоях. Это явление существенно связано с законами изменения блеска сверхновых звезд, а также, может быть, с процессом первичного ускорения космических лучей. Одним из первых Давид Альбертович понял, как об этом свидетельствуют работы об эпиплазме , роль, которую играет в астрофизике и, в частности, в космологии процесс рождения пар частица—античастица в экстремальных условиях. [c.497]

    В древних китайских летописях сохранилась запись о чудесной необычайно яркой звезде, неожиданно возникшей на небосводе, которая затем ностененно угасала, и через два года от нее не осталось следа...Современные астрономы считают, что их давним предшественникам посчастливилось наблюдать редчайшее событие — рождение сверхновой звезды (Supernovae, как ее нынче именуют в звездных каталогах). [c.427]

    Удивительной оказалась и энергетика этого изотопа. Удельную мош ность калифорниевого источника трудно назвать иначе, как гигантской,— 10 000 квт/кг Вполне под-ходяш им для объяснения затухания сверхновой звезды оказался и 60-дневный период полураспада калифорния-254. [c.427]


Смотреть страницы где упоминается термин Сверхновая звезда: [c.286]    [c.56]    [c.57]    [c.132]    [c.135]    [c.136]    [c.21]   
Жизнь как она есть, ее зарождение и сущность (2002) -- [ c.25 ]




ПОИСК





Смотрите так же термины и статьи:

Взрыв сверхновой звезды

Вспышки Новых и Сверхновых звезд

Вспышки Сверхновых звезд и процесс быстрого присоединения нейтронов

Эволюция элементов во вселенной Вспышки Сверхновых звезд — источник космических лучей



© 2024 chem21.info Реклама на сайте