Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие механизмы ядерной релаксации

    ДРУГИЕ МЕХАНИЗМЫ ЯДЕРНОЙ РЕЛАКСАЦИИ [c.254]

    Таким образом, уравнение (X. 12) создает основу для получения информации о внутримолекулярных расстояниях и молекулярной динамике в жидком состоянии. Для правильной интерпретации экспериментальных данных нужно определить, в какой степени другие факторы влияют на наблюдаемую скорость релаксации. Наиболее подходящий способ для этого — измерение коэффициента увеличения г),- интенсивности сигнала за счет ядерного эффекта Оверхаузера (ЯЭО), поскольку ЯЭО сам зависит от диполярной релаксации. Как указывалось в гл. IX, для чисто диполярной релаксации ЯЭО достигает максимального значения л = (1/2) (7н/ус) = 1,988. Если релаксация протекает по диполярному механизму лишь частично, то ее вклад дается выражением [c.411]


    Рассмотрение энергетических уровней, представленных на рис. 1, позволяет предположить существование процесса, при котором сохраняется больцмановское распределение при термическом равновесии в течение резонансного поглощения. Если бы такого механизма не было, то при наложении поля Я1 при резонансной частоте последнего наблюдалось бы поглощение энергии, которое быстро прекратилось бы вследствие выравнивания заселенности уровней. С другой стороны, если механизм поддержания теплового равновесия существует, т. е. существует путь, по которому спины, находящиеся в верхнем состоянии (рис. 1), передают кванты энергии своим соседям и возвращаются в нижнее состояние, то должно иметь место резонансное поглощение энергии за счет постоянной разности в заселенности этих двух энергетических состояний. Подобные переходы схематически изображены на рис. 1 волнистой линией. Такой механизм носит название релаксационного механизма, а константа времени для системы с первоначально одинаковой заселенностью уровней, характеризующая экспоненциальное приближение к состоянию равновесия, называется термическим или спин-решеточным временем релаксации Т . Это время непосредственно зависит от связи ядерного спина с его окружением или решеткой . Экспериментально было найдено, что Тх изменяется от микросекунд до нескольких часов. Согласно определению Т , данному выше. [c.16]

    НОСТЬ испускания энергии ядром равна вероятности поглощения энергии ядром [т. е. переход / /(-Ь Л) /г) так же вероятен, как и переход т/(— /г)->" /( + /2)], и никаких изменений обнаружить нельзя. Как указывалось выше, в сильном магнитном поле имеется некоторый избыток ядер со спинами, ориентированными по полю, т. е. в состоянии с более низкой энергией, и, следовательно, будет происходить результирующее поглощение энергии. По мере того как энергия поглощается от радиочастотного сигнала, через конечный промежуток времени возбуждается достаточное число ядер, так что заселенность нижнего состояния становится равной заселенности верхнего состояния. Сначала можно обнаружить поглощение, но это поглощение будет постепенно исчезать по мере того, как заселенности основного и возбужденного состояний выравниваются. Когда такое состояние достигнуто, образец, как говорят, насыщен. Если прибор для ядерного магнитного резонанса работает исправно, насыщение обычно не обнаруживается, так как существуют пути, позволяющие ядрам вернуться в состояние с более низкой энергией без испускания излучения. Два механизма, с помощью которых ядро в возбужденном состоянии может вернуться в основное состояние, называются спин-спиновой релаксацией и спин-решеточной релаксацией. При спин-спиновой релаксации ядро одного атома в состоянии с высокой энергией передает часть своей энергии другому атому в состоянии с низкой энергией, и суммарного изменения числа ядер в возбужденном состоянии не происходит. Этот механизм не изменяет положения в данном случае, но важен для ряда явлений, которые будут рассмотрены ниже, и поэтому мы упоминаем о нем для полноты картины. Спин-решеточная релаксация включает перенос энергии к решетке. Термин решетка означает растворитель, электроны системы или другие типы атомов или ионов в системе, отличающиеся от исследуемых. Энергия, отданная решетке, превращается в энергию поступательного или вращательного движения, а ядро возвращается в нижнее состояние. Благодаря этому механизму всегда имеется избыток ядер в состоянии с низкой энергией и происходит результирующее поглощение энергии образцом от радиочастотного источника. Ниже мы еще вернемся к рассмотрению процессов релаксации. [c.266]


    Обсудим сперва спин-решеточную релаксацию. Поскольку молекулы содержат магнитные ядра, беспорядочное движение молекул приводит к тому, что эти ядра создают флуктуирующие магнитные поля. Если такое поле ориентировано должным образом и имеет соответствующую фазу (для того чтобы совпасть с частотой прецессии), ядро из верхнего состояния может возвратиться в основное, передав часть своей избыточной энергии решетке в виде вращательной или поступательной энергии. Такой механизм спин-решеточной релаксации называется ядерным дипольным взаимодействием. Полная энергия системы рри таком процессе не изменяется, и эффективность релаксационного механизма зависит, во-первых, от величины локальных полей и, во-вторых, от. скорости флуктуации локальных полей. Можно определить величину, характеризующую скорость такого процесса и называемую временем спин-решеточной релаксации Ту. Большое значение Ту указывает на малую эффективность этого процесса и большое время жизни возбужденного состояния. В отсутствие других эффектов при большом Ту должна возникать узкая линия, как предсказывает уравнение (8-14). [c.304]

    Как указывалось выше, спектр ЯМР многих парамагнитных веществ не удается получить из-за того, что наличие неспаренного электрона приводит к уширению сигнала вследствие взаимодействия по дипольному механизму и взаимодействия электронного и ядерного спинов. Поскольку магнитный момент электрона примерно в 10 раз больше магнитного момента ядра, добавление парамагнитных ионов приводит к появлению сильных магнитных полей, очень эффективно вызывающих диполь-ную спин-решеточную релаксацию, так что понижается (см. раздел, посвященный химическому обмену и другим факторам, влияюшим на ширину линий). Если волновая функция, описывающая неспаренный электрон, имеет конечное значение у ядра, то возникает взаимодействие электронного спина со спином ядра. Оно также приводит к появлению у ядра флуктуирующего магнитного поля, укорачивающего Т1. Если электронная релаксация очень медленная, время жизни иона в данном спиновом состоянии будет большим и должны наблюдаться два резонанса, соответствующих 5= /2- Такое положение осуществляется не особенно часто. Если время жизни парамагнитного состояния очень мало, магнитное ядро будет реагировать только на усредненное по времени магнитное поле двух спиновых состояний электрона и в спектре должен наблюдаться лишь один пик. Часто электронная спиновая релаксация имеет скорость, промежуточную между этими двумя предельными случаями, что в результате приводит к укорочению и очень большому уширению сигналов. Если электронная релаксация очень быстрая, уширение минимально и главным результатом присутствия неспаренных электронов явится изменение магнитного поля, влияющего на магнитное ядро. Это приводит к очень большому химическому сдвигу (достигающему иногда 3000—5000 гц) резонанса в ЯМР-спектре. Такой сдвиг называется контактным ЯМР-сдвигом. [c.323]

    По нашему мнению, продолжительность жизни молекулы воды в гидратационном слое по порядку величины составляет 10 с, т. е. примерно в 100 раз больше, чем время, требуемое для молекулы воды, чтобы разорвать и снова образовать несколько водородных связей, которые ограничивают ее движение в чистом растворителе. Тем не менее это время достаточно мало, чтобы его можно было рассматривать как характеристическое время для движения молекул жидкости. Разъяснение данной точки зрения и другие аспекты динамики взаимодействий вода — белок и белок — вода — белок в растворах белков и являются предметом настоящей статьи. Ниже представлены данные и выводы, следующие из результатов использования очень эффективного экспериментального метода, который, не будучи уже новым, применяется только в нашей и еще очень немногих лабораториях. Авторы измерили зависимость скорости магнитной спин-решеточной релаксации ядер растворителя (воды) в растворах белка от величины магнитного поля. Этому методу дали сокращенное название ЯМР-д (дисперсия ядерной магнитной релаксации). Опыты по ЯМР-д показали, что на быстрое вращательное броуновское движение молекул растворителя (воды) накладывается в результате функционирования механизма взаимодействия (еще не вполне понятого) очень небольшая по величине компонента, которая имитирует намного более медленное вращательное движение молекул белка [6, 7]. Кроме того, в экспериментах по ЯМР-д измеряются усредненные свойства всех молекул растворителя, так что время жизни молекул воды в гидратационном слое выступает в качестве естественного параметра во многих моделях, которые объясняют эти данные. Можно добавить, что данные по ЯМР-д прямо указывают на довольно быстрое ориентационное броуновское движение. Поэтому появляется возможность изучения микроскопической вязкости растворителя вблизи белковой молекулы в широком диапазоне значений pH, в присутствии различных буферов и т. д., что не всегда удается сделать с помощью других методов. [c.162]


    Другой ВИД двойного резонанса, называемый ядерным эффектом Оверхаузера, связан с нарушением обычных механизмов релаксации [4]. Релаксацией называется процесс, при котором ядро, поглотившее энергию, возвращается в свое обычное состояние. Наиболее важный из таких процессов затрагивает диполь-дипольное взаимодействие между вращающимися ядрами. Это взаимодействие сильно зависит от расстояния между ядрами (оно обратно пропорционально шестой степени расстояния). Если одно из вращающихся ядер с помощью излучения вспомогательного генератора насыщено энергией, другому ядру становится труднее отдавать свою избыточную энергию, и это проявляется в усилении сигнала ЯМР. Если оба ядра — протоны, сигнал может быть усилен в 1,5 раза, в то время как при наблюдении резонанса по мере облучения соседнего протона сигнал может возрасти почти в 3 раза. Этот эффект значительно увеличивает отношение сигнал/шум, но более важно, что он помогает идентифицировать пики ядер, находящихся на близком расстоянии друг от друга. Таким образом, это часто позволяет различить пространственные изомеры. В качестве примера рассмотрим вещество [5] [c.285]

    В этой главе мы рассмотрим несколько простых физических моделей, чтобы дать наглядное представление о том, почему и посредством каких механизмов релаксирует система ядерных спинов, помещенная в сильное магнитное поле или выведенная каким-либо способом из равновесного состояния. Иначе говоря, мы хотим рассмотреть, каким образом спиновая система приходит в равновесие со своим окружением, обычно называемым решеткой . Мы начнем с того, что покажем, как распределение частот молекулярных движений в образце влияет на времена релаксации ядер и почему медленные (низкочастотные) процессы влияют только на время спин-спиновой релаксации и не влияют на время спин-решеточной релаксации тогда как высокочастотные процессы (с частотой, равной резонансной, и выше) влияют и на Т1 и на Т . Мы покажем, что релаксацию обусловливает фурье-компонента с частотой со о. Равной резонансной для данного сорта ядер, и что величины Т1 и Га определяются интенсивностью (амплитудой) этой компоненты и величиной энергии взаимодействия, связывающего прецессирующие спины с молекулярными движениями. И наконец, мы используем полученные результаты для того, чтобы наметить путь вывода уравнений, дающих количественную связь величин Г1 и с диполь-дипольным, спин-спиновым и другими взаимодействиями, и приведем несколько примеров, показывающих, какую полезную химическую информацию можно извлечь из данных о релаксации. [c.77]

    В " результате изоэнергетического переноса электрона в комплексе встречи A+D образуется ион-радикальная пара A-D+ с неравновесной конфигурацией ядер и с неравновесным сольватным окружением. Релаксация в зависимости от условий приводит к образованию эксиплекса, ион-радикалов или других продуктов, или к переходу в основное состояние (деградация энергии возбуждения). Перенос электрона в комплексе встречи протекает по туннельному механизму его скорость определяется как энергией активации, т. е. энергией изменения ядерной конфигурации и сольватного окружения, необходимой для выравнивания энергетических уровней в исходном и конечном состоянии, так и вероятностным фактором, зависящим от перекрывания электронных волновых функций донора и акцептора электрона. [c.88]

    Химическая поляризация стала новым и мощным методом установления механизмов химических реакций, детектирования радикалов и радикальных стадий. С помощью ХПЯ легко определить спиновую мультиплетность пар, легко установить, из каких состояний — синглетных или триплетных — рождаются радикалы и молекулы метод позволяет разделить радикальные и нерадикальные пути реакции и оценить количественно их конкуренцию, идентифицировать нестабильные промежуточные продукты и обратимые радикальные стадии, которые не удается установить никакими другими. методами. Из кинетики ХПЯ можно определять константы скорости реакций, а из количественных данных по значению поляризации — кинетику быстрых реакций в радикальных парах (распад, изомеризация радикалов, реакции замещения, переноса электрона и т. д.), происходящих с характеристическими временами 10 - 10-9 с. С помощью ХПЯ можно определять знаки констант СТВ в радикалах, знаки констант спин-спипового взаимодействия в молекулах, времена ядерной релаксации в радикалах и молекулах, устанавливать участие горячих радикалов в реакциях. Методом ХПЯ широко исследованы механизмы всех классов химических реакций — термических, фотохимических, радиационно-химических — и получена новая богатая информация, обобщенная в ряде книг и обзоров (см., например, [14], там же сформулированы условия наблюдения ХПЯ и техника эксперимента).  [c.27]

    Ядерный эффект Оверхаузера возникает за счет вклада протонов в релаксацию ядер С. Более того, его величина определяется относительным вкладом диполь-дипольной релаксации — Н. Заметный вклад других отличных от диполь-дипольного механизмов в спин-решеточную релаксацию приводит к уменьшению ЯЭО. Для одной и той же молекулы интегральные интенсивности в спектре при полном подавлении спин-спинового взаимодействия с протонами могут варьировать в широких пределах, отражая различия в ядер-ных эффектах Оверхаузера. Особенно это относится к небольшим симметричным молекулам, для которых механизм диполь-дипольной релаксации не всегда преобладает даже для некоторых протонированных углеродов. В случае больших относительно жестких молекул, по-видимому, все атомы углерода релаксируют в соответствии с диполь-дипольным механизмом, как было показано Аллерхандом [6]. Для таких молекул в большинстве случаев реализуется максимальный эффект Оверхаузера. Однако даже в случае больших молекул некоторые не-протонированные углероды испытывают заметное влияние других механизмов релаксации и дают резонансные сигналы в спектрах — Н несколько уменьшенной интенсивности. В гл. 2 рассматриваются некоторые вопросы, связанные с интерпретацией значения фактора ЯЭО. [c.24]

    Второй процесс называется поперечной, или спин-спиновой, релаксацией. Второе название связано с тем, что при этом происходит взаимодействие ядерных спинов друг с другом (хотя это не единственный механизм релаксации поперечной намагниченности). При этом процессе отдельные прецессирующие ядерные спины, упорядоченные в некоторой степени для формирования поперечной компоненты намагниченности, постепенно возвращаются к случайному распределению (см. рис. 9.3-5). Очевидно, это существенно определяет вид кривой ССИ, поскольку она является затухающей. В этом случае нет переноса энергии, так как заселенности ядерных уровней не испытывают какого-либо влияния. Соответствующая постоянная времени обозначается Т2, время спип-спиновой, или поперечной, релаксации. [c.214]

    Ранее мы уже отмечали, что стимулированные резонансные переходы ядер между уровнями энергии могут происходить под действием локальных полей, флуктуируюш их вследствие теплового движения атомов и молекул, если в спектре флуктуаций присутствуют частоты, соответствуюш ие резонансной частоте. Этими переходами обеспечивается энергетическая связь между спиновой системой и решеткой, в результате которой происходит выравнивание их температур. Мы рассматривали один из основных механизмов релаксации — магнитные диполь-диполь-ные взаимодействия. Однако, суш ествуют и другие физические взаимодействия, посредством которых энергия ядерных спинов может передаваться тепловому резервуару — решетке. Это электрические квадрупольные взаимодействия-, пространственная анизотропия электронного окружения ядра (анизотропия химического сдвига) скалярное ядерное или электронно-ядерное взаимодействие спин-вращательное взаимодействие, т. е. все те виды взаимодействия, которые обеспечивают возникновение на ядрах флуктуируюш его магнитного (или на квадруполь-ном ядре — флуктуируюш его градиента электрического поля) в результате движения атомов или молекул. Эти виды взаимодействий детально рассмотрены в [168, 171]. [c.257]

    При наличии одного или более времен кросс-релаксации и ядерной спин-решеточной релаксации подходящей величины наложение насыщающей р. ч.-мощности настолько уменьшает эффективное время электронной спин-решеточной релаксации, что можно непрерывно наблюдать линии ДЭЯР, пока сканирование не выходит за пределы ширины линии ДЭЯР (в отличие как от ДЭЯР со сдвигом пакета , так и от дистанционного ДЭЯР, которые представляют два других важных механизма они будут кратко упомянуты в конце этого раздела). [c.395]

    Перекрестная релаксация. Рассмотрение данных рис. 9.5 показывает, что по мере увеличивающегося разбавления протонов растворителя в растворах белков дейтронами скорость релаксации протонов все в большей степени начинает определяться скоростью релаксации протонов белка в соответствии с механизмом соединения протонов этих двух типов на поверхности раздела белок — растворитель. Хотя у нас нет ясного представления о деталях механизма такого спаривания протонов, он может осуществляться путем обмена намагничиваемостью без обмена протонами из гидратационной оболочки. На релаксацию протонов белка в принципе влияет присутствие парамагнитных ПОНОВ в белке, как, например, в цианометгемоглобине, однако на 1релаксацию протонов растворителя они непосредственного влияния не оказывают. Поэтому, хотя вопрос еще подлежит дальнейшему исследованию, изучение ЯМР-д протонов растворителя, по-видимому, дает информацию о процессах ядерной магнитной релаксации в молекулах белка, которые содержат застрявшие (buried) парамагнитные ионы. Такую информацию трудно получить с помощью других методов. [c.178]

    В реальных веществах ЯМР наблюдается не строго на одной частоте, как это следует из ур-ния (4), а в нек-ром интервале частот. Форма линии может также отличаться от приведенной на рис. 3. Конечная ширина линии обусловлена различием условий прецессии соседних магнитных ядер в веществе. Эти условия определяются структурой, агрегатным состоянием вещества и рядом других факторов. Поэтому спектры ЯМР стали полезным инструментом при исследовании внутреннего строения и межмолекулярных взаимодействий в твердых, жидких и газообразных соединениях. Важным фактором, определяющим ширину и форму линии ЯМР, является механизм установления равновесного распределения ядерных моментов образца в поле Но- Пока образец находится вне магнитного поля, ориентации векторов х отдельных ядер хаотически распределены по всем направлениям вследствие теплого движения атомов и молекул. При внесенип образца в поле Яо часть векторов л ориентируется по полю, а часть ( меньшая) — против поля, за счет избыточной тепловой энергии. В этом случае, согласно правилам квантовой механики, ядра могут иметь только определенные, дискретные зйаче-ния энергии, Е1 и 2- Переход к распределению в поле Яо требует нек-рого времени. Такие процессы установления носят название релаксационных и проходят через взаимодействие релаксирующих частиц между собой и с окружающей средой. В теории ЯМР рассматривается два механизма релаксации. Первый характеризуется временем установления теплового равновесия между магнитными ядрами и окружающими атомами и молекулами (спин-решеточная релаксация). Второй характеризуется временем установления равновесия в самой системе магнитных ядер (спин-сниновая релаксация). Встречающиеся в экспериментах значения Т1 лежат в интервале от 10 до 10 сек. Для твердых тел Т1 больше, чем для жидкостей и газов. Релаксация ограничивает время жизни ядра в данном состоянии. Это приводит к конечному интервалу частот, в к-ром наблюдается резонанс [c.545]

    Все методы, которые мы обсудили, применимы для изучения механизмов действия любых ферментов независимо от того, включают они ион металла или нет. Однако имеются три метода, более широкое применение которых в изучении металлоферментов основано на уникальных свойствах ионов металлов. Эти методы будут рассмотрены более детально, а именно 1) исследование спектров ЭПР 2) измерение парамагнитного вклада в скорости ядерной Л1агнитной релаксации магнитных ядер (например, протонов) в лигандах 3) изучение замены одного металла на другой. [c.451]


Смотреть страницы где упоминается термин Другие механизмы ядерной релаксации: [c.303]    [c.213]   
Смотреть главы в:

Магнитный резонанс и его применение в химии -> Другие механизмы ядерной релаксации




ПОИСК





Смотрите так же термины и статьи:

Релаксации механизмы



© 2025 chem21.info Реклама на сайте