Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эукариоты генная экспрессия

    Университетское руководство по молекулярной генетике, написанное выдающимися американскими учеными. Книга содержит подробные сведения и структуре и функциях ДНК, РНК и белков репликации и функционировании генома, о транскрипции и трансляции в клетках про- и эукариот регуляции экспрессии генов, технологии рекомбинантных ДНК и др. С помощью схем, рисунков и таблиц самые сложные вопросы авторы излагают ясно и просто. [c.239]


    Рис 10-2 Пять уровней контроля генной экспрессии у эукариот. Поспе синтеза белка его активность может контролироваться за счет регулируемой деградации (О), обратимых модификаций (например, фосфорилирования) и путем перемещения молекулы белка в определенное [c.178]

    У прокариот регуляторные белки обычно связываются со специфическими последовательностями ДНК вблизи сайта инициации транскрипции и либо подавляют, либо активируют транскрипцию соседних генов. Благодаря гибкости ДНК ее молекула может образовывать петли, что позволяет белкам, присоединившимся на некотором расстоянии от промотора, влиять на РНК-полимеразу. Воздействие на расстоянии весьма распространено в клетках эукариот, ще экспрессию генов часто контролируют энхансеры, удаленные от промотора на тысячи нуклеотидных пар. [c.198]

    В этом разделе мы на нескольких примерах проиллюстрируем механизмы регуляции генной экспрессии, используемые прокариотами, в частности Е. соИ и ее бактериофагами. Более сложные механизмы регуляции у эукариот обсуждаются в гл. 8. [c.172]

    Инициация и регуляция транскрипции ДНК у эукариот с участием РНК-полимеразы в большей степени, чем у прокариот, зависит от множества других белков — факторов транскрипции, взаимодействующих с дискретными участками ДНК, образующих сложный эукариотический про.мотор. В районе промотора, прилегающего к сайту инициации транскрипции (кзп-сайту), обнаружены участки с характерными нуклеотидными последовательностями (мотивами), которые оказывают цис-действие на экспрессию близлежащего гена. Эти элементы могут взаимодействовать с РНК-полимеразой и другими белками-факторами транскрипции. Разные ядерные белковые факторы транскрипции, представляющие собой регуляторные белки, способны связываться с теми или иными нуклеотидными последовательностями ДНК, оказывая тем самым влияние На экспрессию разных генов. Такие белки, способные к диффузии [c.195]

    Регуляция экспрессии генов эукариот лежит в основе програ.ммы развития многоклеточных организмов. В начале XX в. благодаря работам Т. Моргана и Э. Вильсона стало очевидным, что развитие программируется генами. Поэтому один из подходов к пониманию закономерностей высокоупорядоченного процесса развития состоит в выявлении генов, контролирующих ключевые стадии развития. [c.212]

    Опыты с искусственными генными конструкциями, составленными из отрезков ДНК разного происхождения, выявили существование особого цис-действующего элемента регуляции генов эукариот, получившего название усилителя (энхансера) или активатора транскрипции. Энхансеры представлены короткими последовательностями ДНК, состоящими из отдельных элементов (модулей), включающих десятки нуклеотидных пар. Модули могут представлять собой повторяющиеся единицы. Энхансер увеличивает эффективность транскрипции гена в десятки и сотни раз. Впервые энхансеры были обнаружены в составе геномов животных ДНК-содержащих вирусов ( У40 и полиомы), где они обеспечивают активную транскрипцию вирусных генов. Извлеченные из вирусных геномов и включенные в состав искусственных генетических конструкций, они резко усиливали экспрессию ряда клеточных генов. Позднее были обнаружены собственные энхансеры генов эукариотической клетки. Особенность энхансеров состоит в том, что они способны действовать на больших расстояниях (более чем 1000 п. н.) и вне зависимости от ориентации по отношению к направлению транскрипции гена. Оказалось, что энхансеры могут располагаться как на 5 -, так и на З -конце фрагмента ДНК, включающего ген, а также в составе интронов (рис. 112, а). Например, энхансеры были выявлены в районе 400 п. н. перед стартом транскрипции генов инсулина и химо-трипсина крысы. В случае гена алкогольдегидрогеназы дрозофилы энхансер был локализован за 2000 п. н. перед промотором. Энхансеры обнаружены на 3 -фланге гена, кодирующего полипептидный гормон-плацентарный лактоген человека, а также в составе интронов генов иммуноглобулинов и коллагена. [c.203]


    Регуляция экспрессии активности генов у эукариот осуществляется значительно более сложным путем, поскольку процессы транскрипции и трансляции разделены не только пространственно ядерной биомембраной, но и во времени. Эта регуляция базируется как минимум на 6 уровнях сложных биологических процессов, определяющих скорость синтеза и распада генетического продукта (рис. 14.14). [c.538]

    Для большинства эукариотических клеток, как и клеток прокариот, стадия инициации транскрипции является основной, главной регуляторной точкой экспрессии активности генов. Тем не менее имеются существенные различия во-первых, место процессов транскрипции (в ядре) и трансляции (в цитоплазме) во-вторых, активирование транскрипции у эукариот связано с множеством сложных изменений структуры хроматина в транскрибируемой области в-третьих, в эукариотических клетках превалируют положительные регуляторные механизмы над отрицательными. [c.538]

    Известно, что в клетках эукариот ДНК, соединенная с белками (гистонами), упакована в нуклеосомы (гл. 14). В этом состоянии транскрипция невозможна, и для экспрессии генов необходимо деблокирование транскриптона. Следовательно, образование и разрушение нуклеосом является важным фактором регуляции эукариотических генов. Каким же образом происходит деблокирование транскриптона  [c.473]

    Высокий темп исследований генной инженерии на клетках животных вселяет надежду, что в ближайшее время будут разработаны простые системы, которые позволят осуществить анализ механизмов экспрессии генов эукариот и дадут возможность создать животных, обладающих заданными свойствами. [c.441]

    Матричный синтез подразделяют на репликацию, транскрипцию и трансляцию На уровне транскрипции (по крайней мере, у прокариот) осуществляется в основном контроль экспрессии генов, а у эукариот — и на уровне трансляции [c.158]

    Корень термина геном отсылает нас только к генам, и геном какого-либо организма обычно рассматривается как полная последовательность нуклеотидов его ДНК, в которой записана информация обо всех генах. Действительно, геномы бактерий и дрожжей состоят преимущественно из кодирующих гены областей. Однако у многоклеточных эукариот гены составляют только малую часть генома. Мы еще далеки от детального знания о негенных элементах генома, определяющих функции гетерохроматина, тело-меры, центромеры, участвующих в процессах компактизации хромосомы, транскрипции, репликации, митоза, мейоза, репарации. В настоящее время наиболее важными задачами являются поиск и характеристика элементов генома, определяющих правильную временную и пространственную экспрессию генов, детальная идентификация энхансеров, сайленсеров, инсуляторов и других регуляторных элементов, а также анализ нуклеосомного и/или хроматинового кода, выявление мест связывания различных белковых факторов с ДНК и хроматином. В дальнейшем мы узнаем больше о таких элементах генома, как, например, гены, кодирующие РНК, которые не кодируют белков, участки начала репликации ДНК и генетические элемен- [c.58]

    Авторы книги М. Сингер и лауреат Нобелевской премии по химии Н. Берг—всемирно известные специалисты в области молекулярной биологии, одни из создателей генной инженерии, методической основы современной молекулярной биологии и генетики. Читатель найдет в книге подробные сведения о структуре и функциях ДНК, РНК, белков репликации и функционировании генома, обратной транскрипции модификациях, репарации и рекомбинации ДНК о транскрипции и трансляции мРНК в клетках про- и эукариот регуляции экспрессии генов технологии рекомбинантных ДНК. Все эти вопросы обсуждаются в первых двух частях книги. [c.5]

    В первой из трех глав части III (гл. 8) приведены данные о структуре генов эукариот и современные представления о механизме их экспрессии, в частности сведения о сложных сигналах регуляции транскрипции, а также о происхождении, локализации и структуре ингронов и тех механизмах, с помощью которых интроны удаляются из первичных транскриптов при сплайсинге. Очень существенным здесь явилось применение обратной генетики-введение специфических мутаций в определенные сегменты ДНК и последующий анализ структурно-функциональных взаимоотношений в генах эукариот. В гл. 9 основное внимание сосредоточено на организации сложных эукариотических геномов. Рассмотрено расположение генов и других элементов в молекуле ДНК, в частности в центромерных и теломерных областях. Красной нитью через всю главу проходит концепция генома как летописи эволюционной истории. В заключение дано описание геномов внутриклеточных орга-нелл-митохондрий и хлоропластов. В гл. 10 представлены механизмы случайных и неслучайных перестроек геномной ДНК. Речь идет об амплификациях, делециях и транспозициях—как неза-нрограммнрованных и приводящих к мутагенезу, так и запрограммированных в геноме и осуществляющих точную регуляцию генной экспрессии, например изменение типов спаривания у дрожжей и образование генов иммуноглобулинов. [c.7]


    Предполагается, что мозаичная экзон-интронная структура генов, свойственная эукариотам, вероятно, была более древней, чем безынтронная, прокариотическая. В таком случае традиционные филогенетические представления, согласно которым прокариот помещают в основание эволюционного древа, а эукариот — на вершины, должны быть пересмотрены. Геном прокариот, как правило, не содержащий генов с интронами, рассматривается как компактный (рационализированный), образовавшийся в результате потери интронов, например, в результате отбора на скорость репликации. Напротив, предполагается, что мозаичная структура генов определяет эволюционные возможности генома, тогда как прокариоты, утерявшие интроны, представляют собой эволюционный тупик. Заметим, однако, что интроны, удаляемые в результате сплайсинга, изредка обнаруживаются при экспрессии генов в клетках бактерий, например в гене тимидилатсинтетазы фага Т4. [c.194]

    Ванюшин Б. Ф. Метилирование ДНК у эукариот — новый механизм регуляции экспрессии генов и клеточной дифференцировки//Усп. биол. химии. 1983. Т, 24. С, 170—193. [c.221]

    Основа регуляции транскрипции в случае ДНК-содержащих вирусов эукариот та же, что и у ДНК-содержащих фагов,— взаимное расположение и сила промоторов и терминаторов. Но в эукариотных системах встречаются новые регуляторные элементы, прежде всего энхансеры (см. гл. IX). Кроме того, образование зрелых молекул мРНК у ДНК-содержащих вирусов эукариот обычно связано с разнообразными посттранскрипционными изменениями (процессингом) первичных транскриптов. Это обстоятельство вносит важный вклад в регуляцию экспрессии генов. [c.299]

Рис. 14.14. С хематическое изображение регуляции экспрессии активности гена у эукариот. Рис. 14.14. С хематическое изображение <a href="/info/32970">регуляции экспрессии</a> <a href="/info/170859">активности гена</a> у эукариот.
    Если вектор представляет собой плазмиду, реплицирующуюся независимо от хромосомы, то он должен содержать сайт инициации репликации, функционирующий в хозяйской клетке. Если же вектор предназначен для встраивания в хозяйскую хромосомную ДНК, то для обеспечения рекомбинации он должен нести последовательность, комплементарную определенному участку хромосомной ДНК хозяина (хромосомный сайт интеграции). Поскольку технически многие операции с рекомбинантными ДНК сложнее проводить в клетках эукариот, чем прокариот, большинство эукариотических векторов сконструированы как челночные. Другими словами, эти векторы несут два типа сайтов инициации трансляции и два типа селективных маркерных генов, одни из которых функционируют в Es heri hia oli, а другие — в эукариотических хозяйских клетках. Такие векторные системы экспрессии разработаны для дрожжей, насекомых и клеток млекопитающих. [c.136]

    Методы генной инженерии в сочетании с доступностью ДНК, являющихся копиями мРНК, открыли три возможности а) выделение ранее труднодоступных генов эукариот в индивидуальном виде б) получение их в больших количествах, необходимых для структурного анализа в) создание системы их экспрессии в чужеродных организмах, например в бактериальных клетках. [c.298]

    При включении бактериальных генов вместе с их регуляторными участками в Е. соП они, как правило, экспрессируются, давая мРНК и белок. Это происходит потому, что в сигнальных последовательностях, управляющ>1Х транскрипцией и трансляцией в различных прокариотических организмах, много общего. Однако экспрессия генов эукариот в бактериях наблюдается очень редко, если не создавать специальные условия. Регуляторные сигналы эукариот сильно отличаются от регуляторных сигналов бактерий [c.436]

    Поскольку дрожжи представляют собой эукариотический организм, можно было бы ожидать, что гены различных эукариот, в том числе и те, которые содержат интроны, будут корректно экспрессироваться в дрожжевых клетках. Однако это не так. Например, экспрессия генов -глобнна кролика в дрожжах не происходит благодаря некорректности транскрипции и последующего сплайсинга РНК. Тем не менее, применяя приемы, аналогичные использовавшимся при клонировании в бактериях, удается достичь синтеза чужеродных белков в дрожжевых клетках. Такие клетки, подобно В. subtilis, секретируют значительное количество белков во внеклеточную среду, что используют также для секреции чужеродных белков. С этой целью к экспрессируемому гену присоединяется участок, кодирующий сигнальный пептид, обусловливающий секрецию и отщепляемый в ее процессе. В результате в клетке синтезируется белок, содержащий на N-конце сигнальный пептнд. Этот белок секретируется в окружающую среду. Таким образом были получены, например, штаммы дрожжей, секретирующие интерферон человека. [c.440]

    Экспрессия эукариотических генов в прокариотических клетках не реализуется или реализуется с большим трудом В ядерных генах эукариот имеются интроны, а у бактерий нет системы сплайсинга, поэтому образующиеся чужеродные конечные продукты в бактериальных клетках, как правило, неактивны Однако использование векторных систем (в том числе "челночных") и ПЦР позволило успешно решать проблемы, связанные с созданием рДНК их клонированием и экспрессией в различных реципиентных клетках (прокариотических и эукариотических) [c.208]

    Эукариотические гены одних видов были также клонированы и экспрессировались в клетках других видов. Например, ген, кодирующий tx-цепь гемоглобина кролика, был введен в растущие в культуре мышиные клетки и экспрессировался в них. Внедрение чужеродного гена в эукариотические клетки не всегда, однако, сопровождается его транскрипцией и трансляцией с образованием активного белка. Регуляция экспрессии генов у эукариот пока еще мало изучена (разд. 29.22) во время написания этой книги проводится большое число исследований по выяснению условий экспрессии реком-бинантньк генов в эукариотических клетках. [c.988]

    Дель многих опытов по клонированию состоит в наработке в большом количестве какого-либо белка эукариот. Именно для этого и встраивают гены эукариот в плазмиды бактерий, Чтобы достичь высокого уровня экспрессии гена, эукариотическую ДНК нужно встроить вблизи от активного промотора транск- [c.318]


Смотреть страницы где упоминается термин Эукариоты генная экспрессия: [c.122]    [c.132]    [c.85]    [c.225]    [c.191]    [c.205]    [c.206]    [c.191]    [c.205]    [c.206]    [c.48]    [c.104]    [c.419]    [c.956]   
Гены и геномы Т 2 (1998) -- [ c.6 , c.7 , c.8 , c.9 , c.20 , c.172 , c.300 ]




ПОИСК







© 2025 chem21.info Реклама на сайте