Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядерный пространственные эффекты

    За последние годы получил применение ядерный магнитный резонанс (ЯМР), который относится к радиоспектроскопическим методам. Явление ЯМР возникает под действием слабого радиочастотного поля, наложенного на сильное магнитное поле. ЯМР — это резонансный эффект изменения намагниченности вещества, который обнаруживают по возникновению электродвижущей силы индукции в катушке, окружающей образец исследуемого вещества. Спектр ЯРМ дает информацию о структуре соединения, о химической природе, пространственном расположении и числе атомов водорода в функциональной группе молекул, о ходе реакции, так как можно [c.230]


    Ядерный эффект Оверхаузера возникает при близком пространственном расположении двух протонов Нл и Нв (или двух углерод- [c.328]

    Для рассмотрения ядерного эффекта Оверхаузера далее важно отметить, что вклад диполь-дипольных взаимодействий во время продольной релаксации двух ядер, разделенных расстоянием г, пропорционален 1/г . Таким образом, ядерный эффект Оверхаузера может наблюдаться только тогда, когда рас- матриваемые ядра находятся в относительно тесной пространственной близости, так как только в этом случае диполь-диполь-юе взаимодействие действительно дает существенный вклад б механизм релаксации. [c.321]

    В настоящее время получил широкое распространение метод ядерного магнитного резонанса (ЯМР)—резонансный эффект изменения намагниченности вещества, который обнаруживают по возникновению электродвижущей силы индукции в катушке, окружающей образец исследуемого вещества. Спектр ЯМР дает информацию о структуре соединения, о его химической природе, пространственном расположении и числе атомов водорода в функциональной группе молекул, о характере реакций, так как можно быстро определить наличие или отсутствие основных функциональных групп и количество различных веществ. [c.239]

    Изменение интенсивности сигнала в спектрах ЯМР за счет насыщения соответствующих резонансных состояний спина электрона впервые было обнаружено A.B.Оверхаузером [2.2]. Впоследствии это явление было названо эффектом Оверхаузера. Перенос принципов этого эксперимента на систему двух спинов, связанных между собой диполь-дипольным взаимодействием, является основой для определения пространственной структуры методом ЯМР. Эффект Оверхаузера и ядерный эффект Оверхаузера (ЯЭО) основаны на изменении поляризации, наблюдающейся в связанной системе при условии изменения населенности одной или нескольких подсистем. Так как диполь-дипольное взаимодействие, определяющее изменение населенностей, зависит от расстояния между взаимодействующими спинами, то величина ЯЭО также зависит от расстояния между ними. Эта зависимость позволяет определить соответствующие межатомные расстояния. [c.80]

    Другой ВИД двойного резонанса, называемый ядерным эффектом Оверхаузера, связан с нарушением обычных механизмов релаксации [4]. Релаксацией называется процесс, при котором ядро, поглотившее энергию, возвращается в свое обычное состояние. Наиболее важный из таких процессов затрагивает диполь-дипольное взаимодействие между вращающимися ядрами. Это взаимодействие сильно зависит от расстояния между ядрами (оно обратно пропорционально шестой степени расстояния). Если одно из вращающихся ядер с помощью излучения вспомогательного генератора насыщено энергией, другому ядру становится труднее отдавать свою избыточную энергию, и это проявляется в усилении сигнала ЯМР. Если оба ядра — протоны, сигнал может быть усилен в 1,5 раза, в то время как при наблюдении резонанса по мере облучения соседнего протона сигнал может возрасти почти в 3 раза. Этот эффект значительно увеличивает отношение сигнал/шум, но более важно, что он помогает идентифицировать пики ядер, находящихся на близком расстоянии друг от друга. Таким образом, это часто позволяет различить пространственные изомеры. В качестве примера рассмотрим вещество [5] [c.285]


    Таким образом, в настоящее время сформулированы физические модели, механизмы возникновения поляризации ядерных и электронных спинов в ходе радикальных химических реакций, возможные механизмы влияния внещнего магнитного поля и магнитных изотопов на протекание этих реакций. Центральный момент физической теории этих явлений — концепция радикальной пары в клетке и синглет-триплетная эволюция РП за время ее пребывания в клетке . На этой основе сформулирован достаточно общий математический аппарат теории рекомбинации радикалов в растворах. Он позволяет последовательно рассмотреть взаимосвязанные изменения спиновых и пространственных координат реагентов в клетке в промежутках времени между повторными контактами на радиусе реакции. Изложенные выще результаты составляют основу современной теории спиновых и магнитных эффектов в радикальных реакциях. [c.53]

    Все виды взаимодействия излучений со средой можно разделить на две основные группы процессы поглощения и рассеяния. В процессах поглощения, характерных в основном для электромагнитных квантов и нейтронов, первичная падающая частица исчезает , т. е. полностью передает энергию на возбуждение атомов и молекул среды (поглощение света, захват нейтрона) либо помимо этого передает энергию еще и вторичным частицам (фотоэффект, эффект образования пар). В процессах рассеяния падающая частица также передает энергию среде при одновременном изменении направления движения, что важно с позиций пространственного распределения актов взаимодействия в среде. Процессы рассеяния делятся на две группы упругие и неупругие.. При упругих процессах кинетическая энергия системы, состоящей из взаимодействующих падающей частицы (электрона, фотона и т. д.) и атома среды (молекулы, ядра атома), в ходе взаимодействия не меняется. При неупругом рассеянии кинетическая энергия этой системы уменьшается. В процессе поглощения или неупругого рассеяния атомы и молекулы газовой среды переходят из основного в состояние с более высокой энергией (возбужденное вращательное, колебательное, электронное или ядерное) либо происходит ионизация. В конденсированной фазе, кроме того, образуются коллективные возбужденные состояния (фотоны, экси-тоны, плазмоны), а также делокализованные заряды (дырки, электроны проводимости). Детальный состав и превращения перечисленных выше активных частиц рассмотрены в гл. 2. Рассмотрим основные закономерности взаимодействия различных видов излучений и частиц с веществом, зависимости характеристик взаимодействия от энергии излучения и состава среды. [c.16]

    Понятие симметрии играет важную роль во всех е стественных науках. Свойствами симметрии обладают структуры мно1их молекул, ионов, образуемых ими реагирующих систем. Симметрия волновых функций точно соответствует свойствам симметрии ядерных конфигура1Ц1Й, и именно сферическая симметрия водородоподобного атома является причиной наличия одной л-, трех р-,, пяти семи /-орбиталей и т. д., вырождения уровней л-МО в линейных молекулах, структурных искажений, вызываемых эффектом Яна— Теллера первого порядка, и пр. Зная свойства симметрии волновых функций различных электронных состояний, можно, не прибегая к прямым расчетам, определить возможность переходов от одного состояния в другое и получить тем самым представление о характере спектров молекул. По этим свойствам можно судить также об условиях (пространственной ориентации, типе возбуждения), в которых возможны или невозможны реакции между отдельными молекулами. Во всех случаях получаемая информация имеет качественный характер, однако она имеет принципиальное значение для целей классификации и выработки основных принципов. [c.184]

    Самые ранние стадии развития дрозофилы, когда устанавливаются так называемые пространственные координаты эмбрионов, определяющие передний и задний или брюшной и спинной отделы, контролируются группой генов матери. Эти гены функционируют-на стадии образования яйца, и их продукты неравномерно распределяются по яйцеклетке. Предполагается, что материнские гены и нх продукты обеспечивают позиционную информацию, которая воспринимается генами, работающими после оплодотворения, в зиготе. Представление о наличии в цитоплазме яйца позиционной информации, определяющей направление развития групп эмбриональных клеток, подчеркивает роль взаимного влияния частей будущего эмбриона в развитии, но никак не вскрывает природы этих взаимодействий. Мутации в генах, определяющих структуру неоп-лодотворенного яйца, оказывают так называемый материнский эффект, нарушая развитие эмбриона. Например, структуры, свойственные данному району, заменяются иными, характерными для других районов развивающегося организма. Вероятно, такие материнские гены оказывают свое действие на стадии ядерного синцития, до образования клеток бластодермы, когда диффузия продуктов генов затрудняется в результате образования клеточной мембраны. Транскрипты таких генов локализуются в соответствующих отделах (например, переднем или заднем) неоплодотворенного яйца или развивающегося эмбриона. [c.214]


    И приводит к повышению интенсивностн резонансных сигналов ядер, блнзкнх к ядру, подвергающемуся двойному облучению. Повышение интенсивности не обязательно обусловлено только ядрами, разделенными несколькими химическими связями и, следовательно, расположенными близко друг от друга в ковалентной структуре молекулы. Аналогичный эффект может проявляться и в том случае, когда взаимодействие осуществляется не через химические связи, а "через пространство", например, взаимодействующие ядра могут быть разделены десятками химических связей, но пространственно сб гажены в силу каких-либо геометрических ограничений или определенной предпочтительной конформации. Обычно эффект проявляется, если расстояние между связями не превьооает 4А. Именно благодаря ядерному эф ту Оверхаузера удается получить ценную информацию о пространственном расположении атомов, удаленных друг от друга в ковалентной структуре. [c.149]

    Методом рентгеноструктурного анализа монокристаллов установлена детальная пространственная структура сотен белков, значительного числа олигонуклеотидов, нескольких транспортных рибонуклеиновых кислот. Однако встает вопрос, в какой мере установленная структура соответствует той, которая имеет место в функционально активном состоянии биополимера в растворе или в составе живого организма. Априорно нельзя ни исключить, ни оценить масштаб искажения структуры в результате формирования кристаллической решетки. Поэтому весьма существенно располагать независимой инс1юрмацией о геометрии молекулы биополимера, пусть не столь полной, по зато соотиетствующей ее состоянию в растворе. Из экспериментальных методов наиболее П1ючные позиции завоевывают подходы, основанные на использовании ядерною матитпого резонанса, в первую очередь ядерного эффекта Оверхаузера. [c.313]

    Затем анализируются двумерные спектры ядерного эффекта Оверхаузера (сокращенно NOESY), которые содержат всю информацию о диполь-дипольных взаимодействиях между пространственно сближенными протонами молекулы. Величина ядерного эффекта Оверхаузера обратно пропорциональна шестой степени расстояния между ядрами и для пептидов и для небольших белкоа станоаится пренебрежимо малой при расстояниях 0,4 — 0,5 нм. Основываясь на известной аминокислотной последовательности белка или пептида, спиновые системы протонов (отнесенные к определенным типам аминокислотных остатков) соединяют между собой, выявляя диполь-дипольные азаимодействия между протоном N14 ( + 1)-го остатка и протонами N14, С Н и С Н предыдущего 1-го остатка (рис. 66. б). Следуя таким образом адоль полипептидной цепи, получают полное отнесение сигналов в спектре Н-ЯМР к определенным остаткам аминокислотной последовательности. [c.114]

    Одновременно с отнесением сигналоа в двумерных спектрах Н-ЯМР получают практически всю необходимую информацию для реконструкции пространственной структуры белка а растворе. Так, константы спин-спинового взаимодействия между протонами Н —N0 —Н( JHN H характеризует угол 4), Н—С "С —Н ( ЛНС С Н угол -/ ) (М. Карплюс, В. Ф. Быстров) и величины ядерного эффекта Оверхаузера между протонами H...HN, 1<1, (Ф,) ,СГН...НК и, (х,Ч,) lиN,H...HN. ., Id (. ...li,) [позволяют определить торсионные углы , Х -го аминокислотного остатка. Анализ ядерного эффекта Оверхаузера между протонами удаленных по аминокислотной последовательности остатков дает возможность выявить элементы вторичной структуры белка (а-спирали, ( -структуры, ( -изгибы). Существенное значение имеет обнаружение внутримолекулярных водородных саязей, характерных для вторичной структуры белков и пептидов. Для этого изучают скорость обмена атомов водорода группы NH с растворителем (например. дейтерообмен в растворах Н20) и таким образом получают данные об их доступности внешней среде. На заключительном этапе [c.114]

    Во-вторых, соотношение Гольдбергера—Треймана, т.е. соотношение между аксиальным током нуклона и выражением для NN-связи, находит естественное обобщение в случае ядер и пространственная, и временная компоненты ядерного аксиального тока, включающего обменные эффекты, могут рассматриваться как явно связанные с ядерным пионным полем. Именно в этом смысле явления, включающие ядерный аксиальный ток, составляют ветвь пионной ядерной физики. В такой интерпретации киральная симметрия обладает возможностью давать количественные предсказания и в ядерном контексте. [c.393]

    Для атомов углерода полистирола времена спин-рещеточной релаксации и коэффициенты усиления за счет эффекта Оверхаузера не зависят от тактичности полимера. Определяющим механизмом релаксации даже для четвертичных фенильных атомов углерода является диполь-дипольная С— Н релаксация. Поэтому в боль-щинстве случаев можно использовать интегральные интенсивности резонансных сигналов при расчете концентраций триад (и пентад). Это дает возможность получать информацию как о структуре, так и о пространственном расположении атомов. Отклонений от простых соотношений между временами спин-решеточной релаксации, усилениями за счет ядерного эффекта Оверхаузера, интегральными интенсивностями и наблюдаемыми частотами для различных атомов одного и того же полимера следует ожидать только в том случае, если не все рассматриваемые атомы углерода принимают участие в сегментальном движении главной цепи полимера. В частности, можно предполагать существование аномалий интенсивностей спектра ЯМР С для относительно длинных и подвижных боковых цепей, связанных с жестким скелетом полимерной цепи в биополимерах, или для подвижных участков цепи, примыкающих к иммобильным сшитым участкам полимера [19]. [c.196]

    Рассмотренные выше методы исследования электронного строения координационных соединений основываются преимущественно на предположении, что эти соединения имеют определенную конфигурацию ядер, которую можно считать неизменной при рассмотрении электронного движения. Между тем ядра также являются квантовыми микрообъектами, движение которых описывается волновыми функциями, так что их пространственная конфигурация (местонахождение), вообще говоря, определяется лишь вероятностно и зависит от условий измерения. Однако, как было показано (стр. 19) (см. также раздел X. 2), зачастую возможно разделение электронного и ядерного движений в адиабатическом приближении, при котором электронную структуру рассматривают отдельно от динамики ядер. В тех же случаях, когда такое разделение невозможно, что бывает, главным образом, при наличии электронного вырождения или квазивырождения, ситуация становится очень сложной исследование этих случаев в настоящее время далеко от завершения. Между тем, по мере совершенствования методов расчета электронного строения и экспериментального исследования тонких эффектов проблема становится все более актуальной. Изложению некоторых результатов, достигнутых в этой области, посвящена настоящая глава. [c.93]

    Эти данные свидетельствуют о том, что для сохранения гербицидного действия необходима молекула, обладающая планарной конфигурацией, не нарушаемой эффектами пространственного затруднения [215, 216]. Последнее является весьма характерным для четвертичных солей 4,4 -дипиридилия, так как введение алкильного радикала в положение, находящееся вблизи межъ-ядерной связи, приводит к потере гербицидной активности. Не обладают гербицидным действием также четвертичные соли 2,3 - и 3,3 -дипиридилия, хотя эти соединения пространственно вполне могут образовать планарную конфигурацию. Это свидетельствует о том, что наличие плоской молекулы является необходимым, но не достаточным условием для высокой гербицидной активности. [c.205]

    Исследование пространственных, конформационных состояний. иолгипептидных и белковых молекул проводится современными физическими и физико-химическими методами. Вполне понятно, что ценность любого из этих методов будет тем большей, чем точ1нее он позволяет определять пространственное строение белка-фермента, непосредственно связанное с выполняемой последним биологической функцией. Поскольку все ферменты являются асимметрическими системами, растворы которых вращают плоскость поляризации света, то здесь широко используют оптические методы. К ним относятся дисперсия оптического вращения и круговой дихроизм, т. е. изменение оптических характеристик какого-либо соединения в зависимости от длины волны облучающего света. Для многих ферментов, особенно содержащих металлы, можно применить метод магнитной дисперсии, когда оптическая активность (новая, отличная от естественной) индуцируется сильным магнитным полем (это явление известно под названием эффекта Фарадея). При изменении пространственного строения белков-ферментов в растворе меняются и их оптические характеристики — кривые оптической дисперсии и кругового дихроизма, и на основании этого можно судить о характере происшедших изменений. Широкую популярность в химии ферментов завоевали различные спектральные методы, в частности метод ядерно-магнитного резонанса, регистрирующий поведение ядер некоторых атомов в исследуемом пептиде или белке при наложении сильного внешнего магнитного поля, а также методы инфракрасной и ультрафиолетовой спектроскопии и т. п. [c.46]

    Рассмотрены возможности применения различных источнхжов нейтронов для биологических экспериментов и обоснована целесообразность использования для этих целей вертикальных каналов ядерных реакторов. Описаны особенности пространственно-энергетического распределения нейтронов в различных биологических объектах. Дана оценка относнтельнон биологической эффективности (ОБЭ) нейтронов и определяющих се факторов при облучении клеток и животных разных видов. Охарактеризованы особенности реакции млекопитающих на действие нейтронов и неодинаковое значение повреждения критических систем при облучении разных видов животных нейтронами и рентгеновыми или гамма-лучами. Оценены возможности модификации эффектов нейтронного облучения (изменение мощности дозы, фракционирование, кислородный эффект), дана характеристика пострадиационного восстановления при облучении нейтронами. [c.2]


Смотреть страницы где упоминается термин Ядерный пространственные эффекты: [c.5]    [c.117]    [c.36]    [c.45]   
Идентификация органических соединений (1983) -- [ c.512 ]




ПОИСК







© 2024 chem21.info Реклама на сайте