Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бактериофаг, белки репликация

    Бактериофаг X оказался настоящей сокровищницей систем генетической регуляции, изучение которых позволило заметно расширить и углубить наши представления о механизмах генетической регуляции у прокариот. В процессе литического развития гены фага X (см. гл. 7) регулируются таким образом, чтобы обеспечивать контролируемую репликацию ДНК, рекомбинацию, синтез структурных белков и сборку частиц потомства фага. В то же время лизогенам по фагу X присущ иной способ экспрессии генов. В лизогенных бактериях репрессированы все гены профага, используемые при литическом развитии, и экспрессируется только один ген, обозначаемый с1, который контролирует репрессию генов профага. Экспрессия гена с1 в лизогенах обеспечивает также иммунитет клетки к повторной инфекции другим фагом X. [c.183]


    Вирусы впервые были описаны как болезнетворные агенты, которые размножаются только в клетках и имеют настолько малые размеры, что способны проходить через ультратонкие фильтры, задерживающие самые мелкие бактерии До появления электронного микроскопа природа их оставалась неясной, хотя уже тогда высказывалось мнение, что это, возможно, просто гены, которые приобрели способность переходить из одной клетки в другую. В 1930-х годах использование ультрацентрифуги сделало возможным отделение вирусов от компонентов клетки-хозяина. В результате уже в начале 1940-х годов стало более или менее ясно, что все вирусы содержат нуклеиновые кислоты. Это укрепило исследователей в мысли, что вирусы и генетический материал выполняют сходные функции. Подтверждение такой точки зрения было получено при изучении вирусов бактерий (бактериофагов). В 1952 г. удалось показать, что в клетку бактерии-хозяина проникает одна только ДНК бактериофага (без его белка) и что именно она инициирует здесь процесс репликации, приводящий в конечном счете к появлению в инфицированной клетке нескольких сотен дочерних вирусных частиц. Таким образом, вирусы можно рассматривать как генетические элементы одетые в защитную оболочку и способные переходить из одной клетки в другую. Размножение вирусов само по себе часто оказывается летальным для клетки, в которой оно происходит. Многие вирусы разрушают инфицированную клетку (вызывают ее лизис), что и дает возможность потомству вируса переходить в соседние клетки. Клинические симптомы вирусной инфекции во многих случаях отражают именно эту цитолитическую способность вируса Высыпание при [c.314]

    Полезно бросить взгляд на усложнение биологических объектов на разных, последовательных уровнях их структурной и функциональной организации. На самой низшей ступени мы можем взять, например, один из бактериальных вирусов, бактериофаг, известный под обозначением Н-17, использованный во многих исследованиях. Его наследственный аппарат содержит всего три гена. Один ген содержит информацию о структуре белка А, функция которого еще недостаточно выяснена. Второй ген обусловливает структуру белка, из которого построена оболочка фага, а третий ген направляет образование фермента, обеспечивающего репликацию, то есть получение новых копий нуклеиновой кислоты фага, когда он проникает в бактериальную клетку к начинает стремительно размножать себя. Как легко видеть, все здесь сведено к минимуму — к тому минимуму, который является уже последним пределом три гена и три белка. Но зато — что и характерно для всех вирусов вообще — этот вирус не способен практически ни к каким самостоятельным проявлениям жизнедеятельности. Лишь одно ему доступно — заражая клетку, встраивать свою наследственную программу в синтезирующие системы клетки, переключать их работу на себя и так организовать воспроизводство своих новых копий. И второе после того как вирусные частицы покидают клетку, где они были построены, и до того, как они проникнут в новую, еще не зараженную клетку, — словом, в тот период, когда вирус существует вне клетки, белковый чехол защищает его нуклеиновую нить от разрушения. Вот и все, что мы имеем на уровне бактериального вируса, фага. [c.162]


    Цикл размножения вируса начинается с его прикрепления к поверхности клетки. Вирион содержит специальные белки, узнающие определенные вещества мембраны клетки-хозяина эти вещества называют рецепторами вируса. Например, бактериофаг Т4 прикрепляется только к клеткам Е. соИ, полиовирус — к определенным клеткам человека, а также обезьян, вирус гриппа — к клеткам слизистой оболочки дыхательных путей. После прикрепления вирион проникает через мембрану внутрь клетки иногда в клетку попадает только нуклеиновая кислота вириона. Затем с использованием аппарата клетки-хозяина начинается репликация вирусного генома и синтез вирусных белков из них путем самосборки образуются новые вирионы, которые освобождаются из клетки, либо разрушая ее (лизис клеток), либо проходя через мембрану без разрушения клетки. [c.150]

    Изменения в структуре ДНК встречаются очень редко. Так, например, в среднем ген может удвоиться 10 раз, прежде чем произойдет заметная мутация [128а]. Тем не менее, работая с бактериями нли бактериофагами, мы можем обследовать чрезвычайно большое число особей в поисках мутаций. Если, например, посеять один миллион вирусных частиц на чашку с агаром в условиях, позволяющих распознать мутацию определенного гена, то в среднем мы можем надеяться обнаружить один мутант. Наиболее часто встречаются мутации, обусловленные заменами пар оснований (точковые мутации). Оии происходят в результате включения неправильного основания при репликации или репарации ДНК. При таких мутациях одно основание в триплете кодона замещается другим. В результате возникает другой кодон, что приводит к замене в соответствующем белке одной аминокислоты на другую . Замену одного пиримидина на другой С—)-Т или Т—)-С) или одного пурина на другой пурин иногда называют транзицией, тогда как замену пурина на пиримидин или, [c.246]

    Как можно ответить на вопрос о том, локализованы ли мутации в одном и том же гене, в близко расположенных генах или же в генах, отстоящих друг от друга на некотором расстоянии Ответ на этот вопрос можно получить с помощью теста на комплементацию. Если два мутантных бактериофага несут мутации в разных генах, то при заражении бактерии обоими мутантными фагами одновременно часто оказывается, что бактериофаги могут размножаться в бактерии-хозяине. Поскольку в этйм случае у каждого фага есть неповрежденный ген для Одного из двух затронутых белков, все генетические функции в этом случае выполняются. Если же у обоих мутантных фагов поврежден Один и тот же ген, то такие фаги не смогут дополнять функции друг Друга при совместном заражении. Такой эксперимент часто называют Чис-гранс-сравнением. Одновременное заражение двумя различными мутантами — это транс-тест. В качестве же контроля используют цис-тест бактерию заражают одновременно рекомбинантом, несущим обе мутации в одной и той же ДНК, и стандартным фагом. В этом случае репликация должна протекать нормально. [c.250]

    Пытаясь найти по возможности более простые системы для изучения синтеза ДНК, многие исследователи обратились к мелким ДНК-содержащим вирусам типа ФХ174 и М13. Они не обошли при этом вниманием бактериофаги, снабженные отростками фаги Я, Т7 и Т4, а также плазмиду колицина Е-1. Преимущество этих систем состоит в том, что для них легче смоделировать репликацию ДНК в клеточных экстрактах, а кроме того, ДНК вирусов и плазмид хорошо изучены с генетической точки зрения. Во многих случаях репликация зависит как от генов вируса, так и от генов клетки-хозяина. Так, например, мутации генов dnaB, D, Е, F и О приводят к потере способности поддерживать рост фага X точно так же, как и в случае, когда инактивированы /s-гены. Вместе с тем фаг X сохраняет способность к репликации в бактериях с мутантными генами А я С. Многие вирусы, в том числе Т-четные фаги, содержат гены, кодирующие синтез своих собственных специфических ДНК-полимераз и других белков, необходимых для репликации. [c.276]

    Особым и весьма важным типом мРНК являются нуклеиновые кислоты таких вирусов, которые, будучи построены только из белка и РНК, используют рибонуклеиновую кислоту как свой генетический материал. Одноцепочечные вирусные РНК таких объектов, как бактериофаги М52, Н17, Г2 и вирус саркомы птиц, действительно выполняют одновременно как функции собственно мРНК, так и функции матрицы для репликации в процессе биосинтеза новых вирусов. Поскольку их относительно просто получить в чистом виде, именно они стали одним из первых объектов изучения последовательности оснований в РНК (см. гл. 22.4). [c.54]

    Принято использовать понятие репликон , предложенное в 1463 г. Ф. Жакобом, С. Бреннером и Ф. Кьюзеном для обозначения генетической единицы репликации, т. е. сегмента ДНК, который автономно воспроизводится (реплицируется) а процессе клеточного роста и деления. Каждый репликон должен иметь систему управления собственной репликацией. Хромосома Ё. oli, плазмиды, ДНК бактериофагов представляют собой репликоны разной сложности, способные к автономной репликации tf клетке и имеющие систему инициации. Репликон может содержать в себе гены, кодирующие синтез всех белков, необходимых для репликации (хромосома Е. oli), части таких белков (некоторые сравнительно крупные бактериофаги) или использовать для своей репликации практически только чужие белки (мелкие фаги М13 или G-4, содержащие однонитевые циклические ДНК). [c.407]


    Гипотеза эта возникла потому, что было прямо доказано для того чтобы начать удваиваться, молекуле ДНК обязательно надо закрутиться в сверхспираль, но для самого процесса репликации сверхспираль вовсе не нужна. Более того, иногда перед репликацией одна из нитей кольцевой замкнутой ДНК рвется, причем этот разрыв делает специальный белок и только в том случае, если ДНК сверх-спирализована. Получается какая-то бессмыслица — клетка затрачивает усилия, чтобы превратить ДНК в сверхспираль с помощью одного белка (ДНК-гиразы) для того, чтбиы другой белок эту сверхспирализацию немедленно ликвидировал. Но факты неопровержимы — без этого загадочного ритуала репликация не начнется, во всяком случае в тех объектах, которые были исследованы (например, в бактериофаге ФХ174). [c.94]

Рис. 27-7. Общая схема эксперимента Херши и Чейз. Эксперимент проводили на двух препаратах бактериофага, меченного радиоактивным изотопом. В одном из ник о помощью изотопа Р были помечены фосфатные группы фаговой ДНК, а в другом изотоп был введен в серусодержащие аминокислоты белка оболочки фага. Каждый из меченных таким способом фагов по отдельности был добавлен к суспензии немеченых бактерий. Затем обе группы зараженных фагом бактериальных клеток встряхивали в смесителе. Оказалось, что клетки, зараженные Р-вирусными частицами, содержат в своем составе Р, т. е. в них попала меченая вирусная ДНК. Отделенные от клеток тени фага (пустые оболочки вируса) радиоактивности не содержали, В клетках, зараженных З-вирусными частицами, радиоактивности яе было, зато она была найдена в тенях фага после отделения их от клеток с помошью смесителя. Поскольку в обоих случаях было получено потомство вирусных частиц, данный эксперимент доказал, что генетическая информация, необходимая для репликации вируса, переносится вирусной ДНК, а не вирусным белком. Рис. 27-7. <a href="/info/1876287">Общая схема эксперимента</a> Херши и Чейз. Эксперимент проводили на <a href="/info/1696521">двух</a> препаратах бактериофага, <a href="/info/477601">меченного радиоактивным изотопом</a>. В одном из ник о <a href="/info/428544">помощью изотопа</a> Р были помечены <a href="/info/105049">фосфатные группы</a> фаговой ДНК, а в <a href="/info/1465942">другом изотоп</a> был введен в серусодержащие <a href="/info/35751">аминокислоты белка</a> оболочки фага. Каждый из меченных таким способом фагов по отдельности был добавлен к суспензии немеченых бактерий. Затем обе группы зараженных <a href="/info/590432">фагом бактериальных</a> клеток встряхивали в смесителе. Оказалось, что клетки, зараженные Р-<a href="/info/1401121">вирусными частицами</a>, содержат в своем составе Р, т. е. в них попала меченая вирусная ДНК. Отделенные от клеток тени фага (пустые <a href="/info/98015">оболочки вируса</a>) радиоактивности не содержали, В клетках, зараженных З-<a href="/info/1401121">вирусными частицами</a>, радиоактивности яе было, зато она <a href="/info/1330306">была</a> найдена в тенях фага <a href="/info/1660286">после отделения</a> их от клеток с помошью смесителя. Поскольку в обоих случаях было получено потомство <a href="/info/1401121">вирусных частиц</a>, данный эксперимент доказал, что <a href="/info/32967">генетическая информация</a>, необходимая для <a href="/info/33384">репликации вируса</a>, переносится вирусной ДНК, а не вирусным белком.
    Результаты экспериментов по репликации бактериофагов также свидетельствуют о генетической функции ДНК. Особенно показательными в этом отношении были опыты Херши и Чейза. Они метили или только белок или только ДНК вирусных частиц, инкубируя инфицированные бактерии в среде, содержащей соответствующие радиоактивные предшественники. Используя меченые по белку или по ДНК вирусные частицы, Херши и Чейз показали, что только вирусная ДНК (но не вирусный белок) проникает в бактериальную клетку. Позднее эти исследователи показали, что очищенная от примесей белков вирусная нуклеиновая кислота обладает инфекционностью, т. е. при введении в бактериальную клетку приводит к образованию полноценных вирусных частиц. В пользу генетической функции ДНК говорят также следующие аргументы  [c.390]

    После адсорбции на Р-пилях клетки Е. соИ и внедрения в нее молекулы РНК начинается внутриклеточный рост родительской частицы фага f2. По истечении латентного периода продолжительностью примерно 50 мин происходит лизис первых зараженных клеток и освобождается от 1000 до 10 ООО инфекционных частиц потомства на клетку в зависимости от условий роста. Брюхимическое исследование процессов, происходящих в клетках Е. oli, зараженных фагом f2, показало, что в отличие от того, что наблюдается при заражении Т-четным фагом, в этом случае синтез ДНК, РНК и белка клетки-хозяина не подавляется почти до самого конца латентного периода. Эти данные в свою очередь привели к новому вопросу в какой степени продолжающиеся процессы синтеза в клетке-хозяине принимают участие в репродукции бактериофага f2 В частности, важно было выяснить, не осуществляется ли генетическая функция вирусной РНК путем обратной транскрипции ее генетической информации на внутриклеточную ДНК, которая затем обеспечивает синтез РНК и белка потомства фага согласно механизму гетерокаталитической функции ДНК. Эта возможность была, однако, вскоре опровергнута, так как было показано, что размножение фага f2 происходит более или менее нормально в бактериях, обработанных ингибиторами репликации ДНК и ее транскрипции в РНК. Таким образом, было продемонстрировано, что вирусная РНК представляет собой полностью автономный генетический материал, не" нуждающийся в участии ДНК-матрицы для осуществления своей двойной генетической функции. [c.470]

Рис. 1-8. Микрофотография бактериальной клетки (Es heri hia oli) в нормальном здоровом состоянии (А) и через час после инфицирования бактериофагом Т4 (5). Частицы фага (некоторые из них видны прикрепленными к наружной оболочке клетки) впрыскивают свою ДНК в клетку, затем эта ДНК направляет синтез специфических фаговых белков, одни из которых разрушают ДНК бактерии-хозяина, а другие катализируют репликацию ДНК бактериофага На представленной стадии вновь синтезированная фаговая ДНК, упакованная в белковые оболочки, видна в виде Рис. 1-8. Микрофотография <a href="/info/32980">бактериальной клетки</a> (Es heri hia oli) в нормальном <a href="/info/1354165">здоровом состоянии</a> (А) и через час после <a href="/info/1310342">инфицирования бактериофагом</a> Т4 (5). <a href="/info/1891563">Частицы фага</a> (некоторые из них видны прикрепленными к <a href="/info/1567664">наружной оболочке</a> клетки) впрыскивают свою ДНК в клетку, затем эта ДНК <a href="/info/1874676">направляет синтез</a> специфических фаговых белков, одни из которых разрушают ДНК бактерии-хозяина, а другие катализируют репликацию ДНК бактериофага На представленной стадии вновь синтезированная фаговая ДНК, упакованная в <a href="/info/509153">белковые оболочки</a>, видна в виде
    Почти все, что мы знаем о репликации ДНК, удалось выяснить в опытах с очищенными мультиферментными системами бактерий и бактериофагов, способными осуществлять репликацию ДНК in vitro. Получение таких систем в 1970-х годах заметно облегчилось после гого, как удалось выделить мутанты по целому ряду различных генов, ответственных за репликацию, которые можно было использовать для идентификации и очистки соответствующих белков (рис. 5-54). [c.299]

    Более мелкие ДНК-содержащие вирусы, например обезьяний вирус SV40 или мельчайший бактериофаг ФХ174, несут в себе гораздо меньше генетической информации и гораздо больше зависят от ферментов клетки-хозяина как в синтезе своих белков, так и в синтезе своей ДНК. Они подчиняют себе и используют для своих иужд клеточные ферменты, участвующие в репликации ДНК, в том числе и ДНК-полимеразу. [c.316]

Рис. 5-72. Хромосома бактериофага Т4. на которой обозначены больше 30 генов, участвующих в репликапии его ДНК. Геном бактериофага Т4 насчитывает свыше 160000 пар иуклеотвдов, кодирующих более 200 различных белков, в том числе и белков, участвующих в репликации ДНК (некоторые из них здесь отмечены) Среди остальных белков много таких, которые участвуют в сборке головки и хвостового отростка (см. рис. 5- Рис. 5-72. <a href="/info/97711">Хромосома бактериофага</a> Т4. на которой обозначены больше 30 генов, участвующих в репликапии его ДНК. <a href="/info/97684">Геном бактериофага</a> Т4 насчитывает свыше 160000 пар иуклеотвдов, <a href="/info/1435441">кодирующих более</a> 200 <a href="/info/155753">различных белков</a>, в том числе и белков, участвующих в репликации ДНК (некоторые из них здесь отмечены) Среди остальных <a href="/info/1435480">белков много</a> таких, <a href="/info/1669654">которые участвуют</a> в <a href="/info/1456355">сборке головки</a> и хвостового отростка (см. рис. 5-
    Как известно, ультрафиолетовое облучение приводит к блокированию или модификации всех известных функций нуклеиновых кислот. При фотоповреждении ДНК ингибируются трансформирующая активность и способность к репликации и транскрипции, а также происходят различные мутационные изменения, затрагивающие ци-строны, кодирующие структуру всех белков, т-РНК и р-РНК. При локализации повреждения в и-РНК ингибируется процесс связывания ее с рибосомами и т-РНК, утрачивается трансляционная активность, искажается матричный смысл. Наконец, при прямом фотоповреждении т-РНК подавляется ее акцепторная активность к аминокислотам, изменяется структура антикодона и способность комплексироваться с рибосомами и кодонами и-РНК. Конечным результатом фотохимических повреждений нуклеиновых кислот являются гибель или разнообразные мутации, а также всевозможные физиологические изменения бактериофагов, клеток и организмов. [c.242]

    До самого последнего времени считалось неразумным проводить аналогии между вирусами, поражающими различные крупные группы организмов. Одпако достижоция молекулярной биологии продемонстрировали единство основных механизмов синтеза нуклеиновых кислот и белка в природе. Поэтому, прежде чем анализировать довольпо скудные экспериментальные данные о размпожепии вирусов растений, мы кратко рассмотрим основные особенности репликации некоторых РНК-соде])жащих бактериофагов и вирусов животных. Даже в отношении этих вирусов детали процесса репликации изучены еще далеко ие достаточно. [c.138]

    Количество информации, которую вирус привносит в инфицируемую клетку, чтобы обеспечить себе воспроизведение, различается у разных вирусов весьма заметно. Так, в ДНК сравнительно крупного бактериофага Т4 закодировано не менее 30 различных ферментов, обеспечивающих избирательную и быструю репликацию хромосомы бактериофага Т4 в ущерб репликации ДЕЖ клетки-хозяина, т. е. Е. oh (рис. 5-72). Эти белки участвукл в непрерывных циклах репликации Т4-ДЕЖ и осуществляют избирательное включение 5-гидроксиметилцитозина, который в Т4-ДЕЖ замещает цитозин. В геноме бактериофага Т4 закодированы также и нуклеазы, избирательно разрушающие ДЕЖ Е. oh (геном самого бактериофага из-за необычного состава оснований не подвержен действию этих нуклеаз). Кроме того, в нем закодированы белки, изменяющие молекулы бактериальной РНК-полимеразы таким образом, что они на разных стадиях инфекции транскрибируюгт различные группы генов бактериофага. [c.316]

    Каким образом осуществляется временная регуляция экспрессии вирусных тенов, обеспечивающая строго определенный порядок репликации вирусной ДНК, образования вирусных белков и сборку частиц бактериофага при литической инфекции Какие регуляторные механизмы определяют выбор лити-ческого или лизогенного пути развития для инфицирующих фагов Эти вопросы заслуживают того, чтобы обсудить их подробно. Пытаясь разобраться в них, мы увидим, насколько элегантно осуществляется взаимодействие различньж механизмов, которые используют прокариотические организмы для регуляции своих фенотипов. [c.182]


Смотреть страницы где упоминается термин Бактериофаг, белки репликация: [c.244]    [c.195]    [c.296]    [c.297]    [c.316]    [c.316]    [c.149]    [c.140]    [c.296]    [c.314]    [c.316]    [c.316]    [c.195]    [c.249]    [c.15]   
Химия и биология вирусов (1972) -- [ c.237 , c.242 , c.248 ]




ПОИСК







© 2024 chem21.info Реклама на сайте