Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Световая энергия использование растениями

    Хлорофилл — вещество, ответственное за зеленый цвет в растениях, является комплексным соединением, в котором четыре пиррольных цикла связаны в виде комплекса с магнием. Основное значение хлорофилла в природе — его участие в процессе фотосинтеза, в преобразовании световой энергии в химическую [8]. Хотя механизм фотохимического превращения двуокиси углерода и воды в углеводы и кислород еще не совсем ясен, первичной реакцией должно быть фотовозбуждение хлорофилла с последующим использованием этой энергии для окисления воды и восстановления двуокиси углерода. Известны два хлорофилла а и 6 (XII, XIII), которые мало отличаются по структуре, причем главным образом ответствен за фотосинтез первый из них. Полный синтез XII и XIII был осуществлен в 1960 г. [9] (схема 4). [c.318]


    Пища нужна всем живым существам. Она служит им источником энергии и веществ, необходимых для роста и других процессов жизнедеятельности. Живые организмы используют только два вида энергии — это энергия солнечного света и энергия химических связей. Организмы, специализированные для использования световой энергии, осуществляют фотосинтез и содержат пигменты, в том числе хлорофилл, способные поглощать свет. К таким организмам относятся растения, водоросли и некоторые наиболее простые организмы, включая бактерии. Организмы, не способные к фотосинтезу, должны получать химическую энергию (т. е. энергию, запасенную в химических [c.10]

    Фотосинтез — процесс усвоения растениями световой энергии и использования ее для образования органических веществ из диоксида углерода и воды. В ходе этого [c.73]

    История изучения фотосинтеза начинается с 1881 г., когда Ю.Л. Мейер доказал, что фотосинтез протекает в структурах листьев растений - хлоро-пластах. В 20-х годах XX в. К.А. Тимирязев исследовал роль специальных структур - пигментов, называемых хлорофиллами, в поглощении солнечного света (особенно красного и синего) и использовании световой энергии в фотосинтезе. В 1937 г. Р. Хилл открыл фотолиз воды, или фотохимическое окисление воды и образование кислорода, а в 50-х годах М. Калвин с сотрудниками изучили так называемую темновую стадию, во время которой образуются органические вещества. Фотосинтез протекает в хлоропла-стах, которые содержат все необходимое для синтеза органических соединений фоточувствительные пигменты, переносчики электронов, ферменты, коферменты, различные органические соединения, используемые в ходе биосинтеза на темновой стадии. Световая стадия фотосинтеза показана на рис. 39 и может быть описана суммарным уравнением  [c.92]

    В гл. I (см. т. I, стр. 23) мы вычислили общую продукцию органического вещества на земле, принимая, что среднее использование видимого излучения, поглощенного растениями, составляет 2% (что соответствует 0,8% всей падающей световой энергии). Теперь, после анализа данных, на основании которых произведено это вычисление, можно считать его достаточно надежным порядок величины остается неизменным даже в том случае, если приведенные цифры отличаются от истинных в 2 раза. [c.436]

    В общем разница между бактериальным фотосинтезом и фотосинтезом растений заключается в том, какое вещество потребляется в качестве донора электрона при восстановлении пиридиннуклеотидов. В фотосинтезе зеленых растений восстановление пиридиннуклеотидов неизменно нуждается в потреблении световой энергии для использования воды в качестве донора электрона. [c.333]


    Фотосинтез, протекающий в зеленых растениях, может быть подразделен на процессы двух типов фотореакции и синтетические реакции (или, как их принято называть, световые и темиовые реакции). В результате темповых реакций СО2 восстанавливается в глюкозу с использованием атомов водорода из молекулы НАДФН (НАДФ" -это НАД" с фосфатной группой вместо одной рибозной группы —ОН) и энергии от молекулы АТФ  [c.335]

    Хотя приведенные величины эффективности (табл. 16) и низкие, но они близко подходят к оптимальной эффективности использования световой энергии зелеными растениями в обычных условиях. Итак, если хемоавтотрофные организмы, в отличие от зеленых растений, не распространились но всей поверхности земли, то это произошло не вследствие недостаточной их эффективности, а потому, что химическая энергия доступна лишь в немногих, не достигших химической устойчивости местах, какими являются серные источники, угольные кони, железо-карбонатные воды, болота с газами и т. д., тог а как солнечный свет везде в изобилии. [c.124]

    Анализ данных по продукции морского планктона (см. т. I, табл. 2) привел Рилея [126] к заключению, что средняя величина использования световой энергии, падающей на поверхность моря, составляет 0,6—0,8 /о — цифры, близкие к средней величине использования света растениями полей и лесов. Однако в океане жизнедеятельность растительных организмов протекает более или менее равномерно в течение всего года. За исключением части арктических морей, покрытых льдом, в океане не имеется больших бесплодных районов, которые можно было бы сравнить с пустынями или ледниками, расположенными на суше. В силу обоих этих обстоятельств океаны являются главными производителями органического вещества на земле (см. т. I, табл. 4). [c.436]

    В 1923 г. цитолог О. Варбург впервые попытался измерить квантовый выход с )Отосинтеза — число квантов, необходимых для восстановления одной молекулы углекислоты. Это потребовало точного измерения поглощенной световой энергии и объема образующегося кислорода. Для того чтобы получить максимальный возможный выход, следовало работать с очень слабым светом, что позволяло избежать явлений насыщения. Измерения поэтому были очень тонкими. Результаты оказались удивительными Варбург обнаружил поглощение четырех квантов света на каждую молекулу кислорода Это соответствовало минимальному теоретически допустимому значению и означало, что растения являются исключительно эффективными преобразователями энергии. Результаты Варбурга, однако, вскоре подверглись сомнению. Другим исследователям также не удалось подтвердить его наблюдений. Найденная ими величина составляла около 10 квантов на одну молекулу кислорода. Иногда это значение равнялось 8, но ни в одном из случаев оно не было меньшим. Вопрос до сих пор все еще не решен. Преобладающая часть данных свидетельствует в пользу более высоких цифр 8 или более квантов на молекулу кислорода. Но даже это значение — эффективность, равная 35%, — также представляется весьма внушительным, если учесть, что мы не знаем реакции, вызываемой светом вне растительной клетки, при которой в химическую энергию превращалось бы более 10% энергии поглощенного света. Если бы были найдены промышленные способы улавливания и превращения даже 10% световой энергии, то это открытие вызвало бы, конечно, большую революцию в нашей энергетике, чем использование атомной энергии. [c.46]

    Синтез органических веществ в зеленых растениях из углекислого газа и воды с использованием световой энергии носит иазвание фотосинтеза. Процесс фотосинтеза является основным источником образования органических веществ на нашей планете и, с этой точки зрения, вполне объясним интерес, который проявляют к нему представители различных отраслей естество- знания (биологи, химики, физики). Благодаря исследованиям М. Ненцкого, К. Тимирязева, Р. Вильштеттера, Г. Фишера, М. Цвета и др. изучена химическая природа хлорофилла, играющего роль фотосенсибилизатора. Хлорофилл, нерастворимый в воде зеленый иигмент, в зеленых растениях находится в особых образованиях — хлоропластах. Хлоропласты содержат до 75% воды. Сухое вещество хлоропластов состоит из белковой основы (стромы), хлорофилла, фосфатидов, каротиноидов, минеральных веществ, углеводов и т. д. Хлорофилл в хлоропластах содержится в отдель Ш1х гра нулах в сочетании с белками и липидами. [c.229]

    Если бы все пигменты улавливали световую энергию и передавали ее в фотосистему с одинаковой эффективностью, то спектр поглощения и спектр действия должны были бы иметь одинаковую форму однако два спектра несколько различаются (рис. 7-13, А). Если берут отношение двух спектров (рис. 7-13, ), то выявляется сильно выраженное различие при больших длинах волн-так называемое красное падение . В 1957 г. Эмерсон обнаружил, что еслв облучать растение светом, состоящим из более коротких (650 нм) и более длинных, но менее эффективных для фотосинтеза (700 нм), длин волн, то скорость выделения О2 становится гораздо боле высокой, чем при использовании света только одной из указанны выше длин волн. Этот результат, который наряду с другим фактами указывает на то, что две фотосистемы (называемые [c.88]


    Фотореакция у зеленых бактерий. Механизмы фотореакции у зеленых бактерий еще не полностью выяснены. Есть указания на то, что первичный акцептор электронов, участвующий в световой реакции, у зеленых серобактерий обладает потенциалом около — 500 мВ (у пурпурных бактерий-всего лишь — 100 мВ ). При столь больщом отрицательном потенциале становится возможным прямое использование электронов от первичного акцептора для восстановления ферредоксина и пиридиннуклеотида (рис. 12.17). Таким образом, восстановительную силу hlorobia eae, возможно, получают не путем обратного транспорта электронов, требующего затрат энергии. Такая независимость от обратного транспорта электронов была бы важной отличительной чертой фотосинтеза у зеленых бактерий по сравнению с пурпурными. Тогда фотореакция у hlorobia eae не уступала бы по своей эффективности первой фотореакции цианобактерий. С эволюционной точки зрения фотосинтез зеленых бактерий мог бы быть связующим звеном между фотосинтезом пурпурных бактерий и фотосинтезом цианобактерий и растений  [c.392]

    По-видимому, следует говорить не о реакции или даже процессе фотосинтеза, а о фотосинтетической функции растений, подчеркивая этим сложность и многообразие процессов, которые могут осуществляться с помощью энергии света, поглощенного пигментами фотосинтетиче-ского аппарата. В общем виде фотосинтетическая функция — это совокупность процессов поглощения, превращения и использования в различных эндергонических реакциях энергии световых квантов. [c.3]

    Пути миграции энергии возбуждения. Доставка энергии электронного возбуждения к РЦ фотосистем I и П высших растений и РЦ бактериального фотосинтеза осуществляется за счет миграции энергии в светособирающей антенне. Миграция энергии в фотосинтезе — наиболее изученный тип безизлучательного переноса энергии электронного возбуждения в биологических системах (см. 9-11, гл. ХП1). Ее функциональное биологическое значение состоит в повышении эффективности использования поглощенных световых квантов. Действительно, среднее время, необходимое для утилизации энергии кванта света (выделение молекулы О2), соста- [c.290]


Смотреть страницы где упоминается термин Световая энергия использование растениями: [c.583]    [c.432]    [c.79]    [c.20]    [c.182]    [c.230]    [c.82]    [c.397]    [c.425]   
Фотосинтез С3- и С4- растений Механизмы и регуляция (1986) -- [ c.34 ]




ПОИСК





Смотрите так же термины и статьи:

Использование энергии АТР



© 2025 chem21.info Реклама на сайте