Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотосинтез первичные акцепторы электронов

    Заключение. В процессе фотосинтеза происходит превращение энергии света в биохимическую энергию. Первичное действие света состоит в том, что в фотохимических реакционных центрах электроны донора переносятся на акцептор в термодинамически невыгодном направлении. По крайней мере часть электронов возвращается по электрон-транспортной цепи к реакционным центрам. Благодаря особому расположению компонентов электрон-транспортной системы в мембране это сопровождается направленным переносом протонов и созданием протонного потенциала. Таким образом, аппарат фотосинтеза-это прежде всего протонный насос, приводимый в действие светом. Протонный потенциал обеспечивает возможность преобразования энергии путем фос- [c.392]


    Эти реакции происходят в реакционном центре и являются первичными химическими реакциями фотосинтеза. Таким образом, индуцированные светом перемещения электрона в реакционном центре в конечном итоге приводят к переносу его на вторичный акцептор с отрицательным потенциалом. [c.279]

    Фотореакции. Фотореакции относятся к первичным процессам любого фотосинтеза. Местом, где протекают эти фотохимические окислительно-восстановительные реакции, являются реакционные центры. Реакционный центр состоит из ряда компонентов, наиболее важные из которых первичный донор электронов (особый комплекс из хлорофилла и белка) и первичный акцептор электронов. Эти два компонента представляют собой окислительно-восстановительные системы. Система донора (Р/Р" ) обладает положительным, а система акцептора (Х/Х )-отрицательным потенциалом. Под воздействием энергии света происходит перенос одного электрона  [c.385]

    Полупроводниковый механизм рассматривает окислительно-восстановительные процессы в пигментных слоях хлорофилла с позиций электроники твердого тела [27]. Он предполагает миграцию зарядов по зоне проводимости или валентной зоне (в последней возникают светоиндуцированные вакансии) к центрам захвата — химическим акцепторам или донорам электронов. При экситонной миграции энергии в пигментной матрице нейтральный экситон может мигрировать к реакционному центру, где и происходит его диссоциация на два противоположно заряженных носителя. Разделение зарядов может иметь место не только в реакционном центре, но и на дефектах структуры пигментной матрицы [28]. В этом случае носители заряда раздельно мигрируют в матрице электронная вакансия (р) захватывается в активном центре, приводя к образованию катион-радикала хлорофилла (бактериохлорофилла), а электрон (е) — первичным акцептором, который может быть локализован вдали от активного центра. Центры захвата носителей заряда в пигментной матрице, обладающие низкой потенциальной энергией, разделены в пространстве в результате миграции зарядов по зоне проводимости или валентной зоне. В них инициируются первичные химические реакции фотосинтеза. [c.22]

    Отличительной чертой переноса электронов при фотосинтезе является наличие световой стадии, в которой энергия света используется для того, чтобы перенести электрон от первичного донора к первичному акцептору (см. схему 9.1). [c.194]


    Ассимиляция солнечной энергии, т.е. превращение световой энергии в химическую, стартует с поглощения кванта света светособирающими молекулами (антеннами) на поверхности мембраны. Электронное возбуждение безизлучательно передается специальным молекулам внутри мембраны - димерам хлорофилла. Эти димеры хлорофилла входят в состав молекулярных образований, которые называются РЦ фотосинтеза. РЦ фотосинтеза - это достаточно жесткий молекулярный комплекс (молекулярный аппарат). Далее в РЦ происходит процесс разделения зарядов возбужденный димер хлорофилла отдает электрон первичному акцептору электрона. Этот процесс происходит в пикосекундном диапазоне времен. Например, в РЦ пурпурной бактерии в качестве первичного акцептора выступает бактериофеофитин, электрон живет сотни пикосекунд на фео-фитине и переносится на первичный хинон Рд. [c.106]

    Одним из центральных вопросов биоэнергетики является проблема трансформации энергии, выделяющейся в процессе переноса электронов от субстратов к кислороду в митохондриях (биологическое окисление) или в результате фотолиза воды и переноса электронов на первичные акцепторы (фотосинтез), в энергию макроэргических связей молекул АТР. Эти процессы происходят главным образом в биомембранах, вследствие чего практически все биохимические концепции биоэнергетики связаны с представлениями о биомембранах и мембранных белках. [c.38]

    Бактериальный фотосинтез отличается от фотосинтеза высших растений и водорослей отсутствием выделения кислорода донором электрона здесь служит не вода, а более сильные восстановители—H2S, Нг (из гидрогеназы), органические кислоты, тиосуль-фаты. У фотосинтезирующих бактерий отсутствуют эффект Эмерсона и хроматические переходы. На этих основаниях делается вывод о наличии только одной фотосистемы в хроматофорах бактерий — фотосистемы I. В бактериальном фотосинтезе принимают участие несколько цитохромов, которые отличаются по функциональной роли и по спектрам. Для пурпурных бактерий это цитохромы С552 и С555. Вероятно, цитохромы участвуют в нециклическом транспорте к НАД и циклическом транспорте, сопряженном с образованием АТФ. Природа первичного акцептора электронов А, изображенного на схеме, не установлена [c.29]

    В фотосинтезе выделение кислорода может происходить при действии оксидаз с участием четырех первичных окисленных продуктов Z, служащих акцепторами для четырех электронов, отнимаемых от воды при ее окислении до кислорода. (По поводу первого представления, что вода окисляется в фотосинтезе окисным железом, см. 29J.) [c.304]

    Фотореакция у зеленых бактерий. Механизмы фотореакции у зеленых бактерий еще не полностью выяснены. Есть указания на то, что первичный акцептор электронов, участвующий в световой реакции, у зеленых серобактерий обладает потенциалом около — 500 мВ (у пурпурных бактерий-всего лишь — 100 мВ ). При столь больщом отрицательном потенциале становится возможным прямое использование электронов от первичного акцептора для восстановления ферредоксина и пиридиннуклеотида (рис. 12.17). Таким образом, восстановительную силу hlorobia eae, возможно, получают не путем обратного транспорта электронов, требующего затрат энергии. Такая независимость от обратного транспорта электронов была бы важной отличительной чертой фотосинтеза у зеленых бактерий по сравнению с пурпурными. Тогда фотореакция у hlorobia eae не уступала бы по своей эффективности первой фотореакции цианобактерий. С эволюционной точки зрения фотосинтез зеленых бактерий мог бы быть связующим звеном между фотосинтезом пурпурных бактерий и фотосинтезом цианобактерий и растений  [c.392]

    Электрон от первичного акцептора II фотосистемы проходит через цепь переносчиков и поступает в реакционный центр I фотосистемы, на фотоокисленную форму хлорофилла а — пигмент П700 ( о -f500 мВ), заполняя электронную вакансию аналогично тому, как это происходит при фотосинтезе зеленых бактерий. Перенос электронов от первичного акцептора электронов II фотосистемы до реак- [c.245]

    Основные пути транспорта электронов в ходе первичных процессов фотосинтеза показаны на рис. 12.14. Это известная Z- xeлia-результат исследований, в которых использовались методы импульсной спектро-фотометрии, а также искусственные доноры и акцепторы электронов и специфические ингибиторы. Она дает представление об окислительновосстановительных потенциалах пигментов и переносчиков электронов и о последовательнос1 и их окисления и восстановления, но ничего не говорит о локализации этих компонентов в мембране. [c.388]

    При описании процесса первичных квантовых превращений в фотосинтезе Кэлвин [45] предположил, что в хлоропластах растения хлорофилл покрыт, с одной стороны, акцептором электронов в липидной фазе, а с другой — донором, например ферроцитохромом, в водной фазе. При фотовозбуждении хлорофилл передает электрон акцептору. Затем происходит передача электрона от обычной молекулы хлорофилла на вакантную орбиталь положительного иона хлорофилла. Наконец, в итоге этого процесса миграции заряда положительный ион хлорофилла превращается в хлорофилл, отрывая электрон от донора, причем одновременно образуется феррицитохром. Окисленный донор служит окислителем, а восстановленный акцептор — восстановителем на более поздних стадиях процесса, приводящего к восстановлению двуокиси углерода и образованию кислорода  [c.165]


    Более новые исследования привели к выводу, что в реакционный центр бактериального фотосинтеза входят два димера бактериохлорофилла а и димер бактериофеофитина [37, 38]. Предлагается следующая модель реакционного центра и первичных фотопроцессов переноса электрона на первичный акцептор X через промежуточный переносчик У, которым может быть либо димер бактериофеофитина, либо димер бактериохлорофилла [c.25]

    Не все стадии в процессе фотосинтеза являются выясненными и строго доказанными. Однако несомненно, что возбужденный светом хлорофилл является донором электронов, восстанавливая при участии атомов водорода из воды НАДФ до НАДФ-Нг, и, с другой стороны,— акцептором электронов, которые от ОН-ионов воды через цитохром возвращаются на хлорофилл или расходуются на образование АТФ. В то время как первичные фотофизические процессы при фотосинтезе заключаются в поглощении и переносе энергии квантов света, первичные фотохимические процессы заключаются прежде всего в образовании трех веществ молекулярного кислорода, восстановленного НАД или НАДФ и АТФ. Именно в реакциях [c.338]

    По фотофосфорилированию у растений выполнено огромное число научных работ [1707, 1870]. Сравнительная роль нециклического и циклического фотофосфорилирования была установлена исследователями школы Арнона [1338]. Было показано, что в противоположность бактериям, у которых преобладает циклический процесс, у растений в фотосинтезе доминирующим фотохимическим процессом, по-видимому, является нециклическое фотофосфорилирование, поскольку, кроме того что оно поставляет АТФ, оно также представляет собой единственный механизм, выполняющий перенос водорода (через ТПН) от воды к СОг. Таким образом, циклическое фотофосфорилирование у растений, вероятно, удовлетворяет потребность в АТФ для ассимилирования углерода, которая не удовлетворяется полностью нециклическим фотофосфорилированием . Гест [685, 686], не соглашающийся с мнением о роли циклических процессов у бактерий, считает нециклический поток электронов и фотофосфорилирование высокоусовершенствованным и уникальным процессом — фо-тофитотрофией. Первый сравнительно устойчивый акцептор электронов в нециклическом потоке у растений — ферредоксин [76—78, 81, 82, 88], но поиск первичного акцептора элек- [c.126]

    Сопоставление последовательности первичных процессов фотосинтеза с последовательностью событий при окислительном фосфорилировапии у митохондрий показывает, что наиболее существенное и принципиальное различие в процессах преобразования энергии при дыхании и фотосинтезе заключено в способе образования допоров и акцепторов электронов. В случае митохондрий— это субстраты типа НАДН или сукцината, окисляемые (посредством ЦЭТ) кислородом воздуха, в случае хроматофоров — это восстановленные акцепторы и окисленные доноры, образованные под действием света. [c.24]

    Общая схема фотосинтеза цианобактерий представляет определенную серию реакций, включающую две последовательно действующие фотореакции (рис. 80, В). Свет, поглощаемый фоторецепторами II фотосистемы — фикобилипротеидами, хлорофиллом а, каротиноидами, — передается иа хлорофилл реакционного центра (Пезо)- Поглощение кванта света этим пигментом приводит к отрыву от него электрона, подъему его до уровня приблизительно —200 мВ и акцептированию молекулой первичного акцептора — особой формой пластохинона. Окисленная молекула Пево восстанавливается за счет электронов воды, подвергающейся фотоокислению в реакционных центрах фотосистемы II  [c.245]

    В фотосинтезе высших растений и водорослей А это неиденти-фицировакный первый акцептор элегстрона, который передает его через ряд переносчиков в конечном счете СО2. Окисленный цитохром восстанавливается электроном, который освоОождается из воды и передается цитохрому через ряд переносчиков. Такш ооразом, в реакционном центре фотосинтетической единицы образуются первичные окисленные и восстановленные соединенш , дающие начало всей фотосинтетической цепи переноса электрона от воды к СО2. [c.133]

    По существу первичный фотохимический процесс фотосинтеза можно отнести к окислительно восстановительной реакции с переносом электронов (или водородных атомов) от донора (НгО) к акцептору— ТФПН, который выступает в качестве переносчика водорода к СОг- Так как разность между редокс-потенциалами пар [c.464]

    Все молекулы хлорофилла сцособ ы к поглощению света, и, следовательно, к возбуждению, но затем энергия кванта мигрирует к оцределенному активному центру внутри фотосинтетической единицы. Этот центр сравнивают с антенной. Транспорт собранной энергии, по-видимому, происходит благодаря переносу возбуждения [249, 605, 851, 1560, 1681]. Только конечный акцептор энергии в активном центре способен передать электрон первичному окислителю [382— 384, 949, 1401, 1946]. Таким образом, сложное и потому биологически дорогостоящее оборудование для фотосинтеза в активном центре используется наиболее полно. [c.94]


Смотреть страницы где упоминается термин Фотосинтез первичные акцепторы электронов: [c.391]    [c.198]    [c.303]    [c.87]    [c.477]    [c.454]    [c.319]    [c.132]    [c.421]    [c.239]   
Микробиология Издание 4 (2003) -- [ c.279 ]




ПОИСК





Смотрите так же термины и статьи:

Акцептор

Акцептор электронных пар

Фотосинтез

Электроны при фотосинтезе



© 2025 chem21.info Реклама на сайте