Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотолиз воды

Рис. 7.20. Блок-схема электрохимического фотолиза воды (фотоэлектролиз) Рис. 7.20. <a href="/info/50684">Блок-схема</a> <a href="/info/441128">электрохимического фотолиза</a> воды (фотоэлектролиз)

    МЕХАНИЗМ ФОТОСИНТЕТИЧЕСКОГО ФОСФОРИЛИРОВАНИЯ, ОСНОВАННЫЙ НА ФОТОЛИЗЕ ВОДЫ [c.266]

    В настоящее время предложены два типа механизма фотосинтетического фосфорилирования. Первый из них основан на гипотезе, согласно которой первичная световая реакция представляет собой фотолиз воды. Согласно второму типу механизма, выдвинутому Арноном [1], первичной световой реакцией является активация электрона хлорофилла до более высокого энергетического уровня. Арнон и др. [2] предположили далее, что для последующего выделения кислорода в растениях необходима дополнительная световая реакция, связанная с участием какого-то пигмента, отличающегося от хлорофилла а. [c.266]

    В отсутствие жизни основным источником О2 должен быть фотолиз воды под действием коротковолнового УФ-излучения  [c.211]

    Известный интерес представляет фотохимический способ получения водорода, основанный на процессах фотолиза воды, т, е. разложение ее светом. Представим себе, что в воду погружено два электрода, один из которых является полупроводником, а второй— металлом. Если полупроводник подвергать солнечному облучению, то кванты света генерируют в нем свободные электроны. Последние, покидая привычные места, оставляют дырки, т, е. частицы с положительным зарядом. Далее дырки мигрируют к границе электрода с раствором и, встречаясь там с гидроксид-нонами, образуют кислород. Что касается электронов, то они по внешней цепи переходят к металлическому электроду, на поверхности которого восстанавливается водород. Эти процессы можно выразить следующим образом. [c.84]

    Прямой фотолиз воды. не. подходит для преобразования солнечной энергии, поскольку вода не поглощает в видимом спектральном диапазоне. Энергетический порог расщепления БОДЫ до радикальных фрагментов И и ОН примерно соответствует длине волны света Я = 240 нм, но даже на этой длине волны свет поглощается слабо. В то же время ионный окислительно-восстановительный механизм требует переноса четырех электронов. Для переноса каждого электрона необходима свободная энергия 472/4=118 кДж/моль, соответствующая энергии поглощаемого кванта света с длиной волны примерно 1000 нм в ближнем ИК-диапазоне (или, в терминах потенциала, около 118 000/96 500=1,22 В). Такое многоквантовое окислительновосстановительное расщепление воды представляется многообещающим. Вопрос заключается в том, как его осуществить. [c.268]

    Предполагают [5], что в превращениях оксидов азота участвуют гидроксидные (ОН-) и гидропероксидные (НО 2) радикалы, возникающие в реакциях фотолиза воды и разложения углеводородов. Обнаружено, что НО 2 является важной промежуточной частицей в процессах горения и образования фотохимического смога. Он активно участвует в окислении N0  [c.14]


    Земли в атмосферу окислительную в результате выделения кислорода при фотосинтезе. В настоящее время предполагают, что процесс фотолиза воды в верхних слоях атмосферы с удалением водорода в космическое пространство не смог бы обеспечить образование большого количества кислорода в течение докембрийского периода [18]. [c.1008]

    Гидрогеназа получает электроны от ферредоксина. В качестве доноров электронов используются различные органические соединения. Процесс сопровождается облучением видимым светом. Эта форма получения энергии имеет ряд достоинств избыток субстрата фотолиза (воды) нелимитированный источник энергии (солнечный свет) не загрязняющий атмосферу водород. Водород обладает более высокой теплотворной способностью по сравнению с углеводородами, кроме того, процесс получения водорода — возобновляемый процесс, зависящий в основном от стабильности вьщеленных хлоропластов. Водород можно получать в присутствии искусственного донора ё" (вместо воды) и поглощающих свет пиг- [c.26]

    Модификацию свойств твердых тел путем создания дефектных структур можно проиллюстрировать на примере материала, из которого изготавливают электрод для процесса фотолиза воды. Наилучший материал по многим критериям — оксид титана (IV). Однако чистый оксид титана (IV) — диэлектрик. Если убрать из кристаллической решетки немного кислорода, то электрическая проводимость возрастает на много порядков. Для ТЮ1,9а и ТЮ1.995 электрическая проводимость разнится на 14 порядков Такие же результаты можно достичь, если ТЮ легировать атомами Не и Сг, Еще более эффективным оказалось использование и того и другого пути одновременно. [c.48]

    Фотолиз воды, общий для всех фотосинтетических реакций [c.262]

    Коренное изменение возможно, если удастся использовать полупроводниковую керамику с оптимальной шириной запрещенной полосы для фотоэлектролиза воды она должна лежать в пределах от 2,15 до 2,3 эВ. Идеальную для фотолиза воды ширину запрещенной зоны имеют, например, фотоаноды на основе оксидов железа. [c.84]

    Фотолиз воды основан на прямом распаде молекулы воды под воздействием кванта Ну поглощенного света. Энергия кванта света, достаточная для прямого разрыва связи в молекуле воды, равна 237,4 кДж/моль, что соответствует длине волны 5,07-10 м. Необходимая интенсивность фотолиза достигается в области спектра излучения короче 4-10- м, что соответствует примерно 293 кДж/моль. Наиболее благоприятно процесс протекает в диапазоне волн 1,90—2,44-10 м. В виде такой энергии до земной поверхности доходит лишь примерно 3 % от суммарной энергии солнечного излучения (из-за падения плотности частотного спектра излучения Солнца и непрозрачности атмосферы). Прямое фотолитическое разложение воды поэтому наблюдается в верхних слоях атмосферы под действием короткого ультрафиолетового излучения с энергией 3 эВ. Между тем средняя энергия фотонов, [c.335]

    Экспериментальная работа в области многих сельскохозяйственных наук обычно связана с разработкой новых методов анализа. Например, К.А. Тимирязев, изучая физиологические проблемы дыхания растений, одновременно разработал и использовал новые, более точные методы определения оксида углерода (IV). С помощью метода меченых атомов изучен процесс фотолиза воды в клетках зеленого растения. Доказано, кроме того, что растения поглощают оксид углерода (IV) не только листьями из воздуха, но и корнями из почвы. [c.7]

    Использованием метода меченых атомов обусловлены многие успехи современной биологии и агробиологии, например открытие фотолиза воды в клетках зеленого растения или усвоения оксида углерода(1У) корнями растений из почвы. Методом меченых атомов исследуют эффективность различных приемов внесения удобрений в почву, пути проникновения в организм микроэлементов, нанесенных на листья растения, и т.п. Особенно широко используют в агрохимических исследованиях радиоактивные фосфор 32р ц дзот [c.335]

    Фнг. 71. Схема фотосинтетического фосфорилирования на основе фотолиза воды. [c.267]

    Восстановления молибдена(У1) в водных растворах, подкисленных соляной кислотой, при облучении ультрафиолетовым светом (А, > 125 нм) в отсутствие восстановителей не происходит [30]. При облучении в атмосфере водорода или окиси углерода молибден(У1) восстанавливается до молибдена(У). Добавление кислорода затрудняет восстановление. В атмосфере двуокиси углерода молиб-ден(У1) не восстанавливается. Предполагается, что при облучении в атмосфере водорода водород принимает участие в связывании промежуточных продуктов фотолиза воды и тем самым подавляет обратный процесс окисления молибдена(У) до молибдена(У1). Интенсивный процесс восстановления молибдена(У1) в атмосфере СО связан с фотосинтезом формальдегида, принимающего участие в фотохимическом восстановлении молибдена (У I). [c.51]


    Процессы биоконверсии могут быть также использованы в комбинации с термохимическими методами, процессами электролиза. Наряду с плазменным фотолизом воды они могут служить тем запасом энергетической прочности, который необходим человеческому обществу. [c.347]

    Фосфат глицериновой кислоты восстанавливается водородом, образующимся при фотолизе воды, превращаясь в 3-фосфат глицеринового альдегида. Последний частично изомеризуется в 3-фосфат диоксиацетона. [c.663]

    История изучения фотосинтеза начинается с 1881 г., когда Ю.Л. Мейер доказал, что фотосинтез протекает в структурах листьев растений - хлоро-пластах. В 20-х годах XX в. К.А. Тимирязев исследовал роль специальных структур - пигментов, называемых хлорофиллами, в поглощении солнечного света (особенно красного и синего) и использовании световой энергии в фотосинтезе. В 1937 г. Р. Хилл открыл фотолиз воды, или фотохимическое окисление воды и образование кислорода, а в 50-х годах М. Калвин с сотрудниками изучили так называемую темновую стадию, во время которой образуются органические вещества. Фотосинтез протекает в хлоропла-стах, которые содержат все необходимое для синтеза органических соединений фоточувствительные пигменты, переносчики электронов, ферменты, коферменты, различные органические соединения, используемые в ходе биосинтеза на темновой стадии. Световая стадия фотосинтеза показана на рис. 39 и может быть описана суммарным уравнением  [c.92]

    Схема циклического фотосинтетического фосфорилирования, приведенная на фиг. 71, показывает многие важные черты, общие с процессом фосфорилирования в дыхательной цепи. В дыхательной цепи фосфорилирование сопряжено с передвижением водорода от восстановленного субстрата через ряд переносчиков водорода к окислителю — кислороду. В циклическом фотосинтетическом фосфорилировании как восстановитель (Н), так и окислитель (ОН) образуются в результате фотолиза воды. Восстановитель передается переносчиками водорода (возможно, ФМН и цитохромами) [c.268]

    Начальная реакция представляет собой фотолиз воды с образованием восстановительного потенциала водорода и окислительного потенциала гидроксила. [c.266]

    Для проведения лабораторных исследований необходимо знать условия реакций, протекавших на первобытной. Земле, нричем следует отмстить, что ни белки, ни нуклеиновые кислоты не образуются самонроизвольно в нодны.ч растворах [47]. Самоконденсация формальдегида, другого возможного иредшест-венника живой материи, должна была бы привести к образованию сахаров, причем в присутствии СН4 реакция протекает через стадию фотолиза воды. [c.185]

    В ТОМ, ЧТО ЭТОТ процесс обеспечивает наш мир кислородом и энергией та часть ее, которая превышает расход энергии на фотолиз воды (то есть на выделение кислорода), аккумулируется в результате ряда реакций, начинающихся с восстановления СО2, в виде энергии связей С — Н, С — С, С —О и др. Таким аппаратом в растениях служит хлоропласт, построенный из квантосом — макромолекул, размером 100X200 А, молекулярная масса которых достигает почти 1 000 000 (рис. 46). Интересно, что квантосомы, извлеченные из хлоропласта, не полностью лишены фотохимической активности — они выделяют кислород из воды, но не производят фотосинтеза. [c.137]

    Гидроксильный и гидропероксидный радикалы. Гидроксильный радикал НО образуется в результате прямого фотолиза воды, однако этот процесс происходит только в верхних слоях атмосферы, поскольку требует участия коротковолновой радиации. Гораздо более значимым источником радикалов НО является взаимодействие метастабильного ьсислорода 0( В) с молекулой воды. Из уравнений (5.16) и (5.18) ясно, что далеко не все образующиеся при фотолизе озона атомы 0( В) расходуются в реакции (5.17). Для сопоставления эффективности взаимодействия с образованием гидроксила в сравнении с тушением метастабильного кислорода можно использовать отношение [c.159]

    За счет поглощения квантов света возбуждаются пигменты ФС-1, и электроны перемещаются на более высокий энергетический уровень. За счет энергии этих электронов образуются молекулы НАДФН. В ФС-П вследствие фотолиза воды и фотовозбуждения пигментов образуются электроны, которые также двигаются на более высокий энергетический уровень, затем через систему цитохромов переносятся на электронодефицитную ФС-1, и равновесие между системами восстанавливается. Перенос электронов от ФС-П к ФС-1 сходен с движением электронов дыхательной цепи в ходе окислительного фосфорилирования в митохондриях в обоих [c.92]

    Электрокаталитические эффекты могут оказаться весьма полезными при решении проблемы фотолиза воды видимым светом на основе биологических принципов и биологических объектов. Задача сводится к проблеме переноса электронов из электронно-транспортной цепи фотосинтеза на электроды подходящей природьг. На этой основе могут быть созданы как [c.70]

    Водород необычайно быстро проходит путь использования в технике и возобновления в природе (рис. 1.6). Разложение воды и получение из нее водорода и кислорода — это тот процесс, который в громадных масштабах осуществляется растительным миром нашей планеты. Первая отадия фотосинтеза в растительном мире это процесс фотолиза воды на водород й кислород. Кислород при этом выделяется в свободном виде, а водород используется на гидрирование СОг. В обобщенном виде это выражается уравнением  [c.44]

    Для получения водорода принципиально пригоден любой вид энергии, разрывающий валентную связь Н—О—Н. Эту задачу, как показано выше, практически можно решить различными технологическими методами газификацией углей паровой каталитической конверсией углеводородов парокислородной каталитической конверсией углеводородов высокотемпературной конверсией углеводородов металлопаровым процессом разложения воды электродимм воды термохимическими и фотокаталитическими методами разложения воды радиолизом и прямым термическим разложением воды фотолизом воды в ультрафиолетовой области спектра при энергии фотона в диапазоне 5—12,59 эВ биоконверсией воды и другими методами. [c.441]

    Прямой сенсибилизированный фотолиз воды требует энергии 2,46 эВ на одну молекулу [501]. Но если эту реакцию осуществлять как последовательность реакций переноса электронов с использованием катализатора для выделения Нг и Ог, то необходимая энергия снижается до 1,23 эВ, так как в этом случае для ее реализации может быть использован перенос двух электронов, что потребует двух квантов света. В этом случае энергетический порог может быть преодолен светом с длиной волны меньше 10,03-10 м. Солнечный свет в такой ступенчатой схеме используется в серии фотоката-литических процессов. Это позволяет применять ряд фотокаталитических реакций, каждая из которых имеет более низкий энергетический барьер, чем прямой фотолиз воды. Благодаря этому можно для фотохимического разложения воды использовать не только ультрафиолетовое излучение, но и видимое излучение Солнца. [c.336]

    Прямой фотолиз воды требует использования света с энергией квантов 6 эВ, которых практически нет в солнечном спектре. Одним из методов многоступенчатого процесса использования света с меньшей энергией квантов является процесс фотоэлектрохимического разложения воды. Фотоэлек-трохнмические устройства [513] для преобразования солнечной энергии делятся на две группы в зависимости от того, где именно происходит поглощение света и, следовательно, первичный фотопроцесс в растворе (это так называемые фотогальванические элементы) или на электроде. Фотогальвани-ческие элементы имеют КПД в несколько процентов, поэтому их практическое использование пока имеет малую перспективу. Основным объектом исследования стали фотоэлектрохимическне элементы с полупроводниковыми электродами. Как показали исследования, требования к совершенству кристаллической структуры полупроводника в случае фотоэлектрохимических элементов менее жестки, чем в случае с твердотельными полупроводниковыми преобразователями энергии (солнечными батареями), что и послужило основной причиной широкого развития работ по фотоэлектрохимическим элементам с электродами из полупроводников [513]. [c.338]

    Когда анод (Т102) и катод (Р1) опущены в общий раствор электролита, квантовый выход фотолиза воды низок, так как потенциалы реакций 2 и 3 очень близки друг к другу. Повысить эффективность такого процесса, т. е. повысить скорость выделения водорода можно, как было указано выше, путем фиксации определенных pH в анодном и катодном пространствах (высокого pH у анода и низкого — у катода). [c.339]

    Для отдаленного будущего предложен [63, 536, 537] процесс производства водорода, основанный на использовании плазменных температур ядерного синтеза — фотолиз воды ультрафиолетовым излучением, генерируе.мым плазмой в выхлопной струе термоядерного реактора. [c.347]

    Производные триазина и мочевины подавляют в растениях реакцию Хилла (фотолиз воды). Из применяемых нами производных триазина (симазин, атразин, ипазин и пропазин) менее токсичным для сои оказался ипазин. Он меньше других подавлял реакцию Хилла [5]. Надо полагать, что это явилось одной из причин меньшей токсичности ипазина по отношению к сое. [c.241]

    В работах с изотопом кислорода в виде СОг и НзО (А. П. Виноградов, С. Рубен и М. Камен) было показано, что весь кислород, образующийся при фотосинтезе, происходит из воды, а не из углекислоты. Во время световой фазы при участии хлорофилла происходит фотолиз воды, который приводит к освобождению кислорода и восстановлению НАДФ в НАДФ Нг. Реакцию. схематично можно представить В следующем виде. [c.262]

    В световой, или фотохимической, реакции световая энергия превращается в химический потенциал . Анализ первых этапов, на которых энергия захваченных протонов стабилизируется в форме химического потенциала, читатель может найти в работе Кельвина [6]. Многие биологи считают световую реакцию тождественной с реакцией фотолиза воды, хотя такая концепция оспаривается (см. стр. 270). В настоящее время показано, что первыми стабильными химическими индивидуальными продуктами световой реакции в растениях являются НАДФ-Нг и АТФ. [c.260]

    Было высказано предположение, что первичная световая реак ция в фотосинтезе и реакции Хилла заключается в фотолизе водь для создания восстановительного потенциала водорода и окисли тельного потенциала гидроксила. При фотосинтезе водород в конеч ном счете восстанавливает углекислоту с образованием углеводов, а при реакции Хилла водород восстанавливает добавленный окислитель. В обоих случаях гидроксил в конечном счете освобождает молекулярный кислород. Эти реакции представлены в табл. 23. Согласно предложенной схеме, весь кислород, выделяемый при фотосинтезе, происходит из воды. Используя НгО , удалось показать, что кислород, выделяемый в процессе фотосинтеза, действительно происходит из воды, а не из углекислого газа. [c.261]

    Гинотеза фотолиза воды полностью применима также и к фотосинтезирующим бактериям. Эти бактерии, подобно растениям, способны превращать углекислоту в углеводы. Однако они отличаются от растений в том отношении, что никогда не выделяют кислорода и фотосинтез у них зависит от наличия восстанавливающих веществ (например, НгЗ, Нг). Ван-Ниль [15] выдвинул предположение, что у этих организмов первичная реакция, требующая света, представляет собой также фотолиз воды. Как и в растениях, водород используется в конечном счете для восстановления углекислоты до углеводов. Однако бактерии отличаются от растений в том отношении, что гидроксил не служит источником свободного кислорода, а окисляет добавленный восстановитель (табл. 23). [c.261]

    В этой схеме АНз представляет собой неизвестное восстанавливающее соединение, получаемое в результате фотолиза воды, В — НАДФ или феррицианид, а I — промежуточный продукт или ингибитор. По аналогии с механизмом действия ДНФ следует ожидать, что добавление разобщающего вещества, например ионов аммония, приведет к спаду АТФ. В присутствии (в высокой концентрации) сульфгидрильных соединений, например глутатиона или цистеина, и каталитических количеств ФМС хлоропласты катализируют фотогидролиз АТФ до АДФ и Фн- О связи АТФ-азы с фотосинтетическим фосфорилированием свидетельствует ее зависимость от света и ФМС, а также подавление ее дииодоксибензолом, мощным ингибитором фотосинтетического фосфорилирования. Какое влияние оказывают на эту реакцию фотогидролиза ионы аммония, не известно. [c.269]


Смотреть страницы где упоминается термин Фотолиз воды: [c.211]    [c.92]    [c.8]    [c.608]    [c.72]    [c.343]   
Биохимия растений (1966) -- [ c.260 , c.261 ]

Основы биологической химии (1970) -- [ c.315 , c.318 ]

Фотосинтез 1951 (1951) -- [ c.583 ]

Биофизика Т.2 (1998) -- [ c.335 ]

Жизнь зеленого растения (1983) -- [ c.106 ]

Происхождение жизни Естественным путем (1973) -- [ c.298 , c.331 ]

Физиология растений Изд.3 (1988) -- [ c.0 ]

Фотосинтез С3- и С4- растений Механизмы и регуляция (1986) -- [ c.9 , c.12 , c.87 ]




ПОИСК





Смотрите так же термины и статьи:

Фотолиз



© 2025 chem21.info Реклама на сайте