Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пурпурные бактерии фотосинтез

    У всех фотосинтезирующих организмов, включая высшие растения, фотосинтез протекает в мембранных структурах. У пурпурных бактерий поглощающие свет пигменты (бактериальные хлорофиллы и каротины) встроены в мембраны, которые представляют собой складки наружной клеточной мембраны. Эти участки имеют характерную структуру и называются хроматофорами. Они состоят из соединяющихся между собой полых пузырьков, параллельно расположенных трубочек или параллельных пластинок (ламелл) диаметр всей структуры — 50—100 нм. У зеленых бактерий пигменты выстилают внутриклеточные пузырьки. В настоящее время фотосинтезирующие бактерии обитают только в серных источниках и глубоких озерах, но когда-то они были, вероятно, распространены гораздо более широко и являлись единственными фотосинтезирующими организмами на Земле. [c.25]


    Источником всех видов энергии, используемых в биологических системах, является солнечный свет, а преобразование световой энергии в химическую происходит в ходе уникального и важнейшего для жизни процесса -фотосинтеза. Способностью к фотосинтезу обладают как эукариоты (высшие зеленые растения, зеленые, бурые и красные водоросли, некоторые одноклеточные организмы), так и прокариоты (синезеленые водоросли, зеленые и пурпурные бактерии). [c.92]

    Считается, что на ранней стадии существования Земли в атмосфере не было свободного кислорода. Атмосфера была восстановительной и состояла из На, СН , NHз, N2 и Н2О либо только из аммиака и метана. Химическая эволюция органического вещества началась примерно 4 млрд. лет тому назад. Возникшие гетеротрофные организмы научились использовать солнечный свет, стали независимыми и при дальнейшей эволюции не испытывали недостатка в пище. Эти свойства имеют и некоторые пурпурные бактерии, существующие в настоящее время. Они ведут себя подобно гетеротрофам и используют органические соединения, но содержат также хлорофилл, с помощью которого совершается фотосинтез  [c.61]

    Все пурпурные бактерии характеризуются сходным строением и функционированием фотосинтетического аппарата. Они могут расти на свету в анаэробных условиях, осуществляя фотосинтез бескислородного типа. Однако по целому ряду физиологических особенностей, в том числе и по использованию разных соединений в качестве донора электронов при фотосинтезе, между представителями пурпурных бактерий обнаружены значительные различия. Поэтому на основании ряда физиологических признаков группу подразделяют на пурпурные серные и несерные бактерии. [c.298]

    Из различий в спектрах поглощения зеленых водорослей, цианобактерий, пурпурных бактерий и зеленых бактерий можно заключить, что разные группы фототрофных организмов используют для фотосинтеза свет разных участков спектра. Это связано с условиями освещения в естественных местах обитания разных фототрофных организмов. Найденные различия используют дри получении накопительных культур некоторых фототрофных бактерий (см. рис. 12.13). [c.378]

    Ассимиляция солнечной энергии, т.е. превращение световой энергии в химическую, стартует с поглощения кванта света светособирающими молекулами (антеннами) на поверхности мембраны. Электронное возбуждение безизлучательно передается специальным молекулам внутри мембраны - димерам хлорофилла. Эти димеры хлорофилла входят в состав молекулярных образований, которые называются РЦ фотосинтеза. РЦ фотосинтеза - это достаточно жесткий молекулярный комплекс (молекулярный аппарат). Далее в РЦ происходит процесс разделения зарядов возбужденный димер хлорофилла отдает электрон первичному акцептору электрона. Этот процесс происходит в пикосекундном диапазоне времен. Например, в РЦ пурпурной бактерии в качестве первичного акцептора выступает бактериофеофитин, электрон живет сотни пикосекунд на фео-фитине и переносится на первичный хинон Рд. [c.106]


    Некоторые зеленые и пурпурные бактерии, которые в норме живут в анаэробных условиях, например в иле и в стоячей воде, также фототрофны и способны восстанавливать СО2 до углеводов, правда, в ходе фотосинтеза О2 у них не выделяется. Эти бактерии не способны использовать энергию света для [c.327]

    Фотосинтез пурпурных и зеленых бактерий в этих условиях связан со способностью бактериохлорофиллов поглощать свет в красной и инфракрасной областях спектра за пределами поглощения хлорофиллов. Крайняя граница этой части спектра определяется способностью бактериохлорофилла Ь некоторых пурпурных бактерий поглощать свет с длиной волны до 1100 нм. Некоторые фотосинтезирующие эубактерии могут расти в водоемах на глубине до 20 — 30 м, что осуществляется за счет активности другой группы пигментов — каротиноидов. Известно, что различные лучи солнечного спектра поглощаются водой с разной интенсивностью. Глубже всего проникает свет голубой и зеленой частей спектра (450—550 нм), сильнее поглощается ультрафиолет и красный свет. Содержащиеся в клетках некоторых фототрофных эубактерий каротиноиды активно поглощают свет с длиной волны в области 460 нм, обеспечивая этим бактериям рост на значительных глубинах, куда проникает только свет этой части спектра. [c.324]

    В этой разновидности фотосинтеза (которую Гаффрон называет фоторедукцией ) световая энергия используется главным образом для временной активации, а не для постоянного превращения в химическую энергию. Энергия органического вещества, образуемого пурпурными бактериями, лишь в незначительной части является преобразованной световой энергией большая же ее часть, если не вся, представляет собой химическую энергию, перенесенную с одного неустойчивого химического соединения к другому. Существование этих бактерий возможно лишь потому, что Земля до сих пор еще не пришла к полному химическому равновесию и высокие химические потенциалы еще встречаются в разных местах (особенно в вулканических районах). Понятно, эти своеобразные формы автотрофной жизни (мы буде м говорить о них подробнее в главе V) могли играть большую роль в ранние геологические эпохи, когда химическая активность на поверхности Земли была более бурной и напряженной. Поэтому они представляют значительный интерес при рассмотрении проблемы о происхождении и развитии жизни на нашей планете. Для современного цикла живого вещества на Земле эти процессы не имеют значения. Только фотосинтез зеленых растений препятствует исчезновению жизни с лица Земли. [c.18]

    Такой цикл, как известно, был открыт у зеленых водорослей, а затем его функционирование было установлено у высших растений, пурпурных бактерий и цианобактерий. Это наиболее распространенный путь автотрофной ассимиляции углекислоты (см. тему Фотосинтез ). [c.166]

    Каротиноиды выполняют две функции с одной стороны, они участвуют в фотосинтезе как светособирающие пигменты, т.е. поглощают световую энергию и передают ее хлорофиллу с другой стороны, они предохраняют хлорофилл от фотоокисления. Сине-зеленые мутантные формы пурпурных бактерий, лишенные каротиноидов, способны расти только на слабом свету, а при высокой интенсивности света гибнут. [c.378]

    К такому пониманию пришли в результате экспериментальных и теоретических исследований, основанных главным образом на сравнении фотосинтеза у фототрофных бактерий и у зеленых растений. После того как Виноградский (1888) установил, что для некоторых бактерий источником энергии при ассимиляции СО2 отнюдь не всегда служит свет, а Энгельман (1883-1888) на основании своих физиологических исследований отнес пурпурные бактерии к фототрофным [c.383]

    У прокариот известны три типа фотосинтеза I — зависимый от бактериохлорофилла бескислородный фотосинтез, осуществляемый группами зеленых, пурпурных бактерий и гелиобактерий II — зависимый от хлорофилла кислородный фотосинтез, свойственный цианобактериям и прохлорофитам III — зависимый от бактериородопсина бескислородный фотосинтез, найденный у экстремально галофильных архебактерий. В основе фотосинтеза I и II типа лежит поглощение солнечной энергии различными пигментами, приводящее к разделению электрических зарядов, возникновению восстановителя с низким и окислителя с высоким окислительно-восстановительным потенциалом. Перенос электронов между этими двумя компонентами приводит к выделению свободной энергии. В фотосинтезе III типа окислительно-восстановительные переносчики отсутствуют. В этом случае энергия в [c.96]

    У пурпурных бактерий механизм дыхания имеет особенно близкое отношение к механизму фотосинтеза. Ван Ниль показал, что первые стадии обоих процессов, вероятно, совершаются одной и той же энзиматической системой. Здесь можно в немногих словах остановиться на рассмотрении этих своеобразных отношений. [c.115]


    У несерных пурпурных бактерий развиты контакты с молекулярным кислородом. У них имеются ферментные системы защиты от О2. Все несерные пурпурные бактерии способны расти хемот-рофно в микроаэробных условиях, хотя не все из них могут переносить атмосферное содержание О2. При концентрации 62 от 0,5 до 5 % фотосинтез и окислительный метаболизм могут функционировать одновременно. Молекулярный кислород у несерных пурпурных бактерий (как и у всех эубактерий, осуществляющих бескислородный фотосинтез) выступает как мощный фактор, регулирующий их метаболизм. Уже в достаточно низких концентрациях [c.300]

    Как уже указывалось, убыль кислородного поглощения у пурпурных бактерий на свету Накамура считает доказательством фотохимического образования кислорода. Однако есть более вероятное объяснение если скорости фотосинтеза и дыхания лимитированы наличием водорода, доставляемого одной и той же энзиматической системой, то всякое возрастание фотосинтеза будет подавлять дыхание. Тот факт, что эти организмы ни при каких обстоятельствах не переходят от поглощения кислорода к его выделению, хорошо согласуется с таким объяснением, тогда как он трудно объясним, если фотосинтез и дыхание независимы, как у высших растений. Каждая жирная кислота разлагается пурпурными бактериями с особой, характерной для нее, скоростью, одинаковой и для дыхания и для фотосинтеза в случае смеси кислот их суммарная скорость разложения аддитивна. Это доказывает, что для каждой кислоты существует специфический энзим. [c.115]

    В фотосинтезе за этим первичным процессом должны следовать вторичные каталитические реакции, в которых НХ опять прямо или косвенно окисляется до X комплексом двуокись углерода — акцептор, СОд а Z опять прямо или косвенно восстанавливается до HZ водой в обычном фотосинтезе зеленых растений или такими восстановителями, как Hg, HgS или тиосульфат, — в фотосинтезе пурпурных бактерий. [c.233]

    Фототрофные бактерии, осуществляющие аноксигенный фотосинтез, делятся на две большие группы пурпурные бактерии (Rhodospirillales) и зеленые бактерии ( hlorobiales). Представители этих двух порядков значительно различаются по своим цитологическим и физиологическим признакам, а также по характерным для них пигментам (табл. 12.1 рис. 12.1, 12.6 и 12.10). [c.366]

    Образование каротиноидов. Интенсивно-красный цвет пурпурных бактерий обусловлен присутствием красных каротиноидов (с 12-13 двойными связями и с метокси- и оксогруппами). Здесь пигменты играют не только загцитную роль, но и поглощают свет для фотосинтеза, а также участвуют в рецепции света при фототаксисе. Каротиноиды вместе с бактериохлорофиллами находятся в фотосинтетически активных мембранах (тилакоидах, хроматофорах). [c.83]

    Первыми стабильными продуктами фотосинтеза являются АТР и восстановительная сила. Эти продукты можно обнаружить как в интактных клетках и выделенных из них хлоропластах (у зеленых растений), так и в суспензиях фотосинтетических мембранных везикул из пурпурных бактерий. Фиксация СОд не обязательно сопряжена со световой реакцией. Она может происходить и как темновая реакция , не зависящая от пигментсодержащих структур, при наличии АТР и NAD(P)H2. Эти два процесса разделены и в пространстве фотосинтез [c.384]

    Фотореакция у зеленых бактерий. Механизмы фотореакции у зеленых бактерий еще не полностью выяснены. Есть указания на то, что первичный акцептор электронов, участвующий в световой реакции, у зеленых серобактерий обладает потенциалом около — 500 мВ (у пурпурных бактерий-всего лишь — 100 мВ ). При столь больщом отрицательном потенциале становится возможным прямое использование электронов от первичного акцептора для восстановления ферредоксина и пиридиннуклеотида (рис. 12.17). Таким образом, восстановительную силу hlorobia eae, возможно, получают не путем обратного транспорта электронов, требующего затрат энергии. Такая независимость от обратного транспорта электронов была бы важной отличительной чертой фотосинтеза у зеленых бактерий по сравнению с пурпурными. Тогда фотореакция у hlorobia eae не уступала бы по своей эффективности первой фотореакции цианобактерий. С эволюционной точки зрения фотосинтез зеленых бактерий мог бы быть связующим звеном между фотосинтезом пурпурных бактерий и фотосинтезом цианобактерий и растений  [c.392]

    У hloroflexa eae механизм первичных процессов фотосинтеза, видимо, такой же, как у пурпурных бактерий.-Ярнлг. ред. [c.392]

    Энглеманн (1883) первым усомнился в том, что только зеленые растения способны осуществлять фотосинтез. О н предположил, что некоторым бактериям нужен свет для ассимиляции двуокиси углерода и что, таким образом, они также способны к фотосинтезу. Эта точка зрения была подтверждена выделением из пурпурных бактерий пигмента бактериохлорофилла, который отличается от хлорофилла а тем, что содержит два дигидропиррольных кольца вместо одного и вместо винильной группы в кольце I имеется ацетильная группа. [c.567]

    Некоторые бактерии могут существовать автотрофно, не совершая настоящего фотосинтеза. Один из них синтезируют органическое вещество в отсутствие света, используя свободную энергию неустойчивых органических или неорганических химических систем их называют хемоаетотрофными бактериями. Другие, так называемые пурпурные бактерии, используют свет для синтеза органического вещества из двуокиси углерода и неорганических или органических водородных доноров, например сероводорода или жирных кислот. [c.18]

    В результате исследований ван Ниль пришел к следуюш им двум основным выводам. Во-первых, наблюдения и Энгельмана, и Виноградского, и Молиша совершенно правильны, но произведены над различными организмами. Суш,еетвует два рода серобактерий— пигментированные фотоавтотрофные (Энгельман) и непигмен-тированиые (Виноградский), кроме того суш ествует еш,е особый вид пигментироваппых бактерий — гетеротрофные пурпурные бактерии (Молиш). Во-вторых, у фотосинтезирующих серных бактерий окисление сероводорода — не самостоятельный процесс, зависимый от нормального фотосинтеза только благодаря снабжению свободным кислородом, но представляет собой часть самого фотосинтетического механизма. Фотосинтез этих бактерий отличается от фотосинтеза высших растений тем, что в нем сероводород играет роль донора водорода вместо воды. [c.105]

    Такая обобш енная концепция бактериального фотосинтеза дает добавочный важный аргумент в пользу теории интермоле кулярного окисления — восстановления в нормальном фотосинтезе и против теории внутренней перегруппировки Вильштеттера и Штоля. Экспериментально легко доказать, что при фотосинтезе пурпурных бактерий восстановление двуокиси углерода ведет к образованию серы, а не одной части серы и двух частей кислорода (или сернистого ангидрида). Это совершенно аналогично факту, доказанному с гораздо большими трудностями экспериментами Виноградова, а также Рубена, Рендола, Камена и Хайда с тяжелым изотопом (глава III), что весь кислород обычного фотосинтеза образуется из воды. [c.110]

    Мы остановились на рассмотрении обмена веществ пурпурных бактерий в. темноте потому, что параллелизм дыхания и фотосинтеза дает дополнительный аргумент в пользу частичной прямой ассимиляции восстановителя. Если подобная ассимиляция обнаруживается в темновом метаболизме, она, вероятно, происходит и на свету. Таким образом, в дополнение к прямой ассимиляции перевосстановленных промежуточных соединений, которое предлагается для объяснения отклонений от уравнений (5.12) и (5.13), можно считать, что часть углеводов, образуемых нри фотоассиыиляции жирных кислот, может получиться за счет непосредственной гетеротрофной ассимиляции, а не фотосинтеза. Ван Ниль [46] рассматривает в случае ассимиляции ацетона три возможные реакции (5.16), (5.17) и (5.18), к которым для полноты можно добавить еще две реакции (5.18) и (5.19)  [c.116]

    На свету б) и 6) повышение водородной абсорбции в атмосфере водорода и повышение выделения водорода в атмосфере азота. Первый процесс может быть идентичным с реакцией (7), т. е. может представлять скорее фоторедукцию двуокиси углерода, образовавшейся при кислотном брожении, чем гидрогенизацию органического водородного акцептора 7) и 8) фотосинтез при участии двуокиси углерода и водорода или двуокиси углерода и органических водородных доноров (процессы, напоминающие обмен веществ автотрофных и гетеротрофных пурпурных бактерий). Гаффрон называет эти реакции фоторедукциями, термин хотя и не" очень точный, но пригодный как сокращенное обозначение для фоторедукции двуокиси углерода иными восстановителями, чем вода. Термин фотосинтез в смысле фоторедукцин двуокиси углерода водой сохраняется. (В целях последовательности термин фоторедукция надо бы употреблять, говоря об обмене пурпурных бактерий такая терминология не строго проведена в главе V.) [c.134]

    Фотосинтез у зеленых и пурпурных бактерий может происходить совершенно таким же образом, как и фоторедукция адаптированных водорослей (за исключением того, что их энзиматическая система заморожена и ни при каких обстоятельствах не может перейти на выделение кислорода). Однако более вероятно, что неспособность пурпурных бактерий к выделению кислорода вызывается иным характером промежуточных продуктов окисления Z по-с-дедние не имеют достаточной энергии для превраш ения в Од и в свободный кислород и могут восстанавливаться лишь гидрогеназной системой (см. главу VII). [c.154]

    Несмотря па аналогию в обмене веществ адаптированных водорослей и пурпурных бактерий, он играет различную роль в жизни этих организмов Гаффрон [17] обнаружил, что после нескольких дней фоторедукции у водорослей не проявлялось увелнчепия в содержании хлорофилла, сравнимого с увеличением, происходящим за такой же период фотосинтеза. [c.154]

    Ван Ниль и Гаффрон считают, что окисление воды представляет собой одну (или даже единственную) из первичных фотохимических реакций обычного фотосинтеза (как в схеме на фиг. 16). Таким об-pa30i[, предположение о неучастии восстановителей-заменителей воды в фотохимическом процессе не исключает логического вывода, что и в бактериальном фотосинтезе первичным фотохимическим процессом является окисление воды. Отсюда отсутствие выделения кислорода на свету пурпурными бактериями можно объяснить двояким образом. Согласно одной гипотезе, предложенной Гаффроном, промелсуточный продукт окисления воды ОН может восстанавливаться у бактерий восстановите.мми-заменителями — водородом, сероводородом и т. д., так как эти организмы содержат активную гидрогеназную систему и не содержат энзима Eq, выделяющего кислород. Вторая гипотеза, предложенная ван Нилем, предполагает, что первичный продукт, получающийся при окислении воды у бактерий ОН , несколько отличен от продукта, получающегося у зеленых растений ОН - , и поэтому он не может превратиться в [c.174]

    Исходя из гипотезы ван Ниля, можно сделать заключение, что механизмы фоторедукции адаптированных водорослей и пурпурных бактерий несколько отличаются друг от друга. Первые содержат обычно хлорофилл, на котором, вероятно, процесс адаптации не отзывается. Таким образом, первичный продукт окисления воды ОН " -, вероятно, одинаков и в нормальном и в адаптированно>г фотосинтезе. Разницу в конечной стадии окисления, как предполагает Гаффрон (глава VI), следует отнести за счет активации гидрогеназной системы с одновременной инактивацией ферментной системы Ед, выделяющей кислород. Идентичность первичного процесса у адаптированных и нормальных зеленых водорослей подтверждается наблюдениями Рике и Гаффрона [34]. Эти исследовате.1И отмечают, что максимальный квантовый выход ц скорость насыщения на мигающем свету одинаковы прл фоторедукцин у адаптированных водорослей и при фотосинтезе у неадаптированных водорослей. С другой стороны, у пурпурных бактерпй первичный окисленный продукт ОН , естественно, не способен превратиться в свободный кислород. В данном случае аэробные условия могут вызвать лишь полное прекращение синтеза (если они ведут к окислите.1ьной инактивации гидрогеназы), но не могут вызвать переход к обычному фотосинтезу (с водой в качестве восстановителя), как это получается при исчезновении адаптации у зеленых водорослей. [c.175]

    Другое объяснение анаэробного торможения выдвинуто Вильштеттером [7] и Франком [11]. Эти исследователи полагают, что первой ступенью фотосинтеза может быть фотохимическое дегидрирование хлорофилла кислородом, приводяш ее к образованию фотохимически активного монодегидрохлорофилла . Эта гипотеза имеет известное сходство с концепцией дисмутации энергии , описанной в главе IX. Возможно, что нет нужды в специальном объяснении роли кислорода в фотосинтезе, так как не доказана его необходимость для этого процесса. Так, Харвей [5] воспользовался исключительно чувствительными к кислороду светяш имися бактериями и показал, что у водорослей выделение кислорода начинается в течение первой секунды с начала освещения даже в среде, лишенной всяких следов кислорода. Франк и Прингсхейм, наблюдая тушение фосфоресценции адсорбированных красителей, обнаружили, что водоросли выделяют кислород при первой вспышке даже после 2-часового пребывания в чистейшем азоте. После выяснения сходства фотохимического процесса у зеленых растений и пурпурных бактерий Гаффрон [8, 10] отметил, что многие пурпурные бактерии живут лишь в строго анаэробных условиях. Это также служит доказательством, что кислород не необходим для фотосинтеза. [c.335]

    Хлоропласты — небольшие зеленые тела, включенные в цитоплазму высших растений и зеленых водорослей. Вместе с соответственными органами красных и бурых водорослей они входят в более широкое понятие хромопластов. Сине-зеленые водоросли вовсе не содержат хромопластов вероятно, зеленые и пурпурные бактерии также их не имеют (см. Метцнер [18]). На важность хромопластов для фотосинтеза указывает тот факт, что в них сконцентрирован весь хлорофилл, а также и прочие относяш иеся к фотосинтезу пигменты— каротипоиды и фикобилины. [c.359]

    В настоящее время мы не может судить, является ли совершенно обязательным для фотосинтеза какая-либо из структурных единиц, наблюдающаяся в фотосинтезирующих клетках, оропдасты отсутствуют у сине-зеленых водорослей гранулы, невидимому, присутствуют в растениях всех типов, даже и у Суапоркуееае, но и они отсутствуют у некоторых видов. Пластинки, которые по Менке и Кауше и Руска являются еще более важными структурными единицами, чем гранулы, до сих пор не наблюдались в хромопластах красных и бурых водорослей, не говоря уже об их вероятном отсутствии в хроматоплазме сине-зе-леных водорослей и пурпурных бактерий. [c.368]

    Флуоресценция и внутренняя диссипация изменяются в равной мере с изменением скорости первичного фотопроцесса только в том случае, если фактор, обусловливающий это изменение, не влияет на константу скорости внутренней диссипации. Нет никакого основания полагать, что это справедливо для всех случаев. Априорная вероятность (константа скорости) внутренней конверсии может быть совершенно разной в комплексах X СЫ HZ, НХ СЫ Z, НХ hl HZ и X СЫ Z. Если один из фотостабильных комплексов, например НХ СЫ HZ, рассеивает энергию возбуждения более эффективно, чем светочувствительный комплекс X - hl HZ, то эффект тушения флуоресценции при накоплении этого светостабильного комплекса может перекрывать эффект, стимулирующий флуоресценцию в результате подавления первичного фотохимического процесса. Таким образом результат, в конечном счете, сведется к одновременному уменьшению выхода как флуоресценции, так и фотосинтеза другими словами, флуоресценция, освобожденная в данном случае от одного из двух конкурирующих с нею процессов — от первичного фотопроцесса, будет иметь дело со вторым, более сильным конкурентом, внутренней конверсией, и будет испытывать общее уменьшение. Способность к диссипации энергии у хлорофиллсодержащих комплексов может несколько различаться у разных видов и даже штаммов в противном случае выход флуоресценции должен был бы получаться точно одинаковым во всех растениях. Этим можно объяснить, почему ограничение в снабжении СОд (или полное голодание в отношении Og), повидимому, оказывает различное влияние на флуоресценцию листьев [58, 61], пурпурных бактерий [63] и диатомовых водорослей [67]. В первом случае голодание в отношении СО5, дает значительное [c.235]


Смотреть страницы где упоминается термин Пурпурные бактерии фотосинтез: [c.580]    [c.264]    [c.384]    [c.391]    [c.393]    [c.508]    [c.104]    [c.104]    [c.105]    [c.114]    [c.119]    [c.130]   
Фотосинтез 1951 (1951) -- [ c.207 , c.348 ]




ПОИСК





Смотрите так же термины и статьи:

Фотосинтез



© 2025 chem21.info Реклама на сайте