Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозионная стойкость металлов и сплавов в органических, средах

    В книге освещены проблемы и современное состояние борьбы с коррозией аппаратуры и машин в химической, нефтеперерабатывающей и смежных с ними отраслей промышленности. Описаны исследование коррозии металлов в условиях теплопередачи применение электросварных труб в нефтеперерабатывающей и нефтехимической промышленностях катодное наводороживание и коррозия титана и его а-сплавов в различных электролитах влияние водорода на длительную прочность сталей влияние пластической деформации на водородную стойкость сталей о методике определения температурных границ применения конструкционных сталей в гидрогенизационном оборудовании влияние водорода при высоких температурах и давлениях на механические свойства металлов защитные свойства плакирующего слоя стали 0X13 на листах стали 20К против водородной коррозии влияние твердости стали ЭИ579 на ее коррозионную стойкость в водородосодержащих средах влияние легирующих элементов на водородную коррозию стали влияние толщины стенки и напряжений на скорость водородной коррозии стали протекторная защита теплообменной аппаратуры охлаждаемой сырой морской водой коррозия углеродистой стали в уксусной кислоте и электрохимический способ ее защиты торможение коррозии стали Х18Н9 в соляной кислоте добавками пенореагента ингибиторы коррозии для разбавленных кислот ингибиторы коррозии стали в системе углеводороды—сероводород—кислые водные растворы сероводородная коррозия стали в среде углеводород—электролит и защитное действие органических ингибиторов коррозии ингибиторы коррозии в среде углеводороды—слабая соляная кислота коррозионно-стойкие стали повышенной прочности для химического машиностроения тепло- и коррозионно-стойкие стали для печных труб и коммуникационных нефтеперерабатывающих заводов коррозия в нитрат-нитритном расплаве при 500° С коррозионная стойкость сталей с пониженным содержанием никеля в химически активных средах коррозия нержавеющих сталей в процессе получения уксусной кислоты окислением фракции 40—80° С, выделенной из нефти коррозионные и электро-химические свойства нержавеющих сталей в растворах уксусной кислоты коррозия металлов в производстве синтетических жирных кислот газовое борирование металлов, сталей и сплавов для получения коррозионно- и эрозионно-стойких покрытий применение антикоррозионных металлизированных покрытий в нефтеперерабатывающей промышленности коррозия и защита стальных соединений в крупнопанельных зданиях. [c.2]


    Титан и его сплавы отличаются высокой коррозионной стойкостью в ряде агрессивных неорганических и органических сред. В литературе [1—3] имеются многочисленные данные о коррозионном поведении различных металлов в растворах галоидов в органических средах. Есть также указания [4] на высокую агрессивность по отношению к титану растворов брома в метиловом спирте, а также на то, что анодирование титана значительно повышает его коррозионную стойкость в этих растворах. Однако подробных сведений о коррозионном поведении титана и механизме коррозионных процессов в галоидных растворах спиртов нет. Исследование коррозионной стойкости титана в органических средах в присутствии галоидов с практической стороны представляет большой интерес для выяснения возможности применения титана в качестве конструкционного материала в ряде условий органического синтеза. [c.164]

    Коррозионная стойкость металлов и сплавов в органических средах [c.209]

    Титан и его спчавы обладают очень высокой коррозионной стойкостью в морской воде, влажной морской и промышленной атмосфере. В этих средах скорость коррозии титановых сплавов не превышает 0,0001 мм/год. Несмотря на то, что титан относится к наиболее термодинамически неустойчивым металлам, его высокая коррозионная стойкость обусловлена защитными свойствами образующихся гидридных и оксидных пленок. Титановые сплавы устойчивы в окислительных средах даже в присутствии больших количеств хлор-ионов в большинстве органических сред. Исключение составляют серная, соляная,. муравьиная, щавелевая, винная, лимонная, смесь ледяной уксусной кислоты с уксусным ангидридом. Технические титановые сплавы, легированные алюминием (до 6%), марганцем (1...2%), оловом широко используются в химическом машиностроении, пищевой промышленности. [c.158]

    В книге обобщены данные о свойствах и коррозионной стойкости металлических и неметаллических материалов. В ней приводятся таблицы и диаграммы коррозионной стойкости металлов и сплавов, пластмасс, стеклопластиков, резин, лакокрасочных и силикатных материалов в агрессивных органических и неорганических средах при комнатной и по-, вышенной температурах. [c.2]

    В отличие от большинства технически чистых металлов титан и его сплавы устойчивы в растворах хлоридов как при комнатной температуре, так и при повышенных (скорость коррозии оценивается значениями 0,02 мм/год). В большинстве органических сред титан обладает высокой коррозионной стойкостью. К таким средам относятся бензин, метиловый и этиловый спирты, толуол, фенол, формальдегид, трихлорэтан, уксусная, муравьиная, молочная, винная, лимонная, никотиновая кислоты и ряд других органических соединений. [c.191]


    Рассматривая коррозию магния и его сплавов, важно проанализировать и методы, используемые для оценки коррозионных свойств, а особенно так называемые ускоренные испытания. Испытания путем полного погружения в соленую воду или путем периодического обрызгивания образцов морской водой пригодны для определения коррозионной стойкости магниевых сплавов только в этих конкретных условиях и не позволяют оценить стойкость в каких-либо других средах. Экстраполяция результатов таких испытаний на менее агрессивные условия неправомерна, более того, таким способом вряд ли можно оценивать даже эффективность защитных мероприятий. Причина заключается в том, что коррозионное поведение непосредственно связано с формированием на металле нерастворимых пленок. В самом хлоридном растворе стабильные нерастворимые пленки не образуются, более того, никакие ранее сформировавшиеся в результате химических реакций пленки не являются непроницаемыми для хлор-иоиа. Ионы хлора сравнительно легко проникают даже через имеющиеся защитные покрытия, а пленки органических красок я лаков подвергаются осмосу и разбухают, что может быть очень далеко от условий обычной эксплуатации. За исключением спе-цального определения поведения материалов в разбавленных растворах хлоридов, ускоренные испытания такого типа недопустимы, и их результаты могут ввести в заблуждение. [c.129]

    Излучение иа 1. .. 3 порядка усиливает коррозию ряда металлов в атмосферных условиях, заметно влияет на развитие процесса в органических средах и на коррозионную стойкость урановых сплавов [2]. [c.532]

    Тантал — металл, наиболее коррозионностойкий, если не считать золота и металлов платиновой группы, являющихся драгоценными. Их коррозионная стойкость, в отличие от тантала и других конструкционных сплавов, целиком определяется высокой термодинамической стабильностью. Тантал практически не взаимодействует со многими коррозионноактивными средами. Например, он стоек в большинстве минеральных и органических кислот. Исключение составляет фтористоводородная кислота и кислые растворы, содержащие ионы фтора, которые с заметной [c.298]

    По коррозионной стойкости в ряде практически важных сред титан превосходит такие широко используемые в промышленности металлы и сплавы, как нержавеющие стали, алюминий и его сплавы. Титан устойчив в окислительных средах даже в присутствии больших количеств хлор-ионов, но корродирует в растворах восстановительных кислот, таких как серная, соляная. Однако его коррозионная стойкость в этих средах может быть повышена добавлением в раствор небольших количеств окислителей (например, азотной кислоты, хлора, ионов Т - -, Ре -<-, Си2->- и других) или окислительных (анодных) ингибиторов. Титан имеет высокую коррозионную стойкость в различных атмосферах (морской, промышленной, сельской). Данные семилетних испытаний показали, что скорость коррозии не превышала 0,0001 мм1год. В морской воде как на поверхности, так и на больших глубинах (данные 3-летних испытаний) титан не подвергается коррозии. Длительные испытания (4—8 лет) титана в разнообразных почвах показали отсутствие коррозионных потерь. Титан отличается высокой стойкостью в большинстве органических сред. Исключение составляют муравьиная, щавелевая, винная, лимонная, смесь ледяной уксусной кислоты с уксусным ангидридом, в которых титан корродирует с большой скоростью. [c.226]

    Возможность успешного осуществления процессов анодного окисления органических соединений нередко лимитируется коррозионной стойкостью анодов, выбор которых, особенно в кислых Средах, ограничен благородными металлами и их сплавами, графитом и рядом окисных электродов, таких как двуокись свинца, магнетит и двуокись марганца. [c.406]

    Низкая коррозионная стойкость магния и его сплавов, известных под названием электроны , в большинстве электролитов и растворов, применяемых в гальванических цехах, сильно ограничивает возможность их использования в качестве конструкционных материалов. Однако в ряде сред, например в щелочах и в плавиковой кислоте, магний и его сплавы весьма стойки, так как в этих средах они покрываются устойчивыми пленками и полностью пассивируются. Магниевые сплавы отличаются также высокой стойкостью во многих органических жидкостях бензине, керосине, спиртах и т. д. Это позволяет рекомендовать магниевые сплавы для изготовления емкостей и ванн для указанных жидкостей. Металлы и сплавы, которые могут применяться для изготовления оборудования гальванических цехов, приведены в табл. 12. [c.18]

    Алюминий — легкий металл, плотность которого при 20° С составляет 2,7 г/см , т. пл. 659° С, т. кип. около 2500° С. Он обладает высокой электропроводностью и теплопроводностью. В окислительной среде, в частности на воздухе, на алюминии образуется плотная окисная пленка, придающая ему коррозионную стойкость. Алюминий стоек против азотной и органических кислот. Алюминий для увеличения механической прочности и литейных качеств сплавляют с другими металлами. Наибольшее распространение нашли сплавы алюминия с медью, магнием и марганцем, называемые дюралюминами, а также сплавы с кремнием — силумины. Сочетание легкости с прочностью, высокой электро- и теплопроводностью сделало алюминий и его сплавы важнейшими конструкционными материалами в самолетостроении, автостроении, транспортном машиностроении, в электротехнике, для изготовления двигателей внутреннего сгорания и т. п. В химической промышленности алюминий и его сплавы используются для изготовления труб, резервуаров, аппаратуры. Наша страна имеет мощную алюминиевую промышленность, которая развивается быстрыми темпами. [c.142]


    В химическом машиностроении применяют несколько сотен различных марок корроэионностойких, жаростойких и конструкционных сталей. Широко используют для защиты от коррозии высокоцрочные и кислотостойкие сплавы на основе никеля, хрома, циркония и других металлов. Наряду с этим, в химическом машиностроении применяют многочисленные полимерные материалы, обладающие высокой коррозионной стойкостью к воздействию минеральных и органических кислот, растворов солей, щелочей и других агрессивных сред. Применение неметаллических материалов имеет большое государственное значение, так как экономятся дефицитные и дорогостоящие металлы и сплавы. Кроме того, ряд технологических процессов может быть оформлен только при условии применения неметаллических материалов. [c.3]


Смотреть страницы где упоминается термин Коррозионная стойкость металлов и сплавов в органических, средах: [c.163]    [c.18]    [c.627]    [c.627]    [c.329]    [c.693]    [c.27]   
Смотреть главы в:

Справочник нефтехимика. Т.1 -> Коррозионная стойкость металлов и сплавов в органических, средах




ПОИСК





Смотрите так же термины и статьи:

Коррозионная pH среды

Коррозионная стойкость

Коррозионная стойкость вых средах

Металлы коррозионное металлов

Металлы сплавы

Органические металлы

Сплавы и металлы металлов

Среда органическая



© 2025 chem21.info Реклама на сайте