Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм коррозионного процесса

    Конструкционные материалы, находясь в различных условиях эксплуатации, подвергаются коррозионным разрушениям, в результате которых снижается их прочность и сокращаются сроки их службы, загрязняются продукты производства, что приводит к снижению их качества, ухудшается внешний вид материалов. Существуют внутренние и внешние факторы коррозии. К первым относятся факторы, связанные с природой материала (состав, структура, внутренние напряжения, состояние поверхности). Внешние факторы определяются составом коррозионной среды и условиями коррозии (температура, давление, скорость движения материала относительно среды и др.). По механизму коррозионных процессов, протекающих на металлических материалах, общепринято разделять химическую и электрохимическую коррозию. [c.13]


    На основании значений /внутр при разных значениях потенциала может быть построена зависимость /внутр = / (У), т. е. зависимость скорости коррозии металла от потенциала, представляющая большой самостоятельный интерес и необходимая, например, для установления доли электрохимического механизма коррозионного процесса (см. рис. 190), на котором абсцисса точки s даст /max = /э = х, Т. е. числитель правой части уравнения (627) для расчета Ьэ = х. [c.285]

    Механизмы коррозионного процесса. По механизму коррозионного процесса различают три основных типа коррозии химическую, электрохимическую и биохимическую. [c.208]

    С 50-х годов начинаются систематические работы по исследованию механизма действия ингибиторов, что стало возможным благодаря развитию электрохимической теории коррозии. Создаются крупные научные школы по разработке и исследованию ингибиторов коррозии в Москве (Институт физической химии АН СССР, Московский государственный университет, Московский государственный педагогический институт им. В. И. Ленина), Киеве (Политехнический институт), Днепропетровске (Металлургический институт), Перми (Пермский государственный университет) и других городах. Широкое использование в коррозионных исследованиях импедансных и потенциостатических методов стало возможным благодаря работам НИФХИ им. Карпова, по инциативе которого были разработаны н созданы первые отечественные потенциостаты, мосты переменного тока, другие приборы и оборудование. Резко повысился теоретический и экспериментальный уровень проводимых исследований, возросло число фундаментальных работ, посвященных механизму коррозионных процессов, ингибированию их, исследованию закономерностей адсорбции ингибиторов и компонентов агрессивной среды, кинетики. В разработку теоретических основ коррозионных процессов большой вклад внесли школы А. Г. Акимова, Я- М. Колотыркина (В. М. Нова-ковский, В. Н. Княжева, Г. М. Флорианович), работы В. П, Батракова. Н. Д. То-машова, В. В. Скорчеллетти. [c.8]

    Для выяснения причин коррозии и мер ее предотвращения коррозионисты-исследователи изучают механизмы коррозионных процессов. Инженеры-коррозионисты используют накопленные наукой знания с учетом эксплуатационных данных и экономических факторов. Например, инженер-коррозионист осуществляет катодную защиту подземных трубопроводов или испытывает и разрабатывает новые краски, рекомендует добавки ингибиторов коррозии или металлическое покрытие. Ученый-коррозионист для этога разработал оптимальные варианты катодной защиты, определил молекулярную структуру химических составов с лучшими ингибирующими свойствами, создал коррозионностойкие сплавы и определил режим их термической обработки. Как науч- [c.16]


    По механизму коррозионного процесса выделяют два основных типа коррозии металлов химическую и электрохимическую. [c.189]

    Ниже детально рассматривается механизм коррозионных процессов в системе нефтепродукт + вода + металл, наиболее характерной и важной для химмотологии. [c.282]

    Попадание в неэлектролиты воды значительно активирует действие примесей в неэлектролитах и вызывает, особенно в присутствии солей или кислот, интенсивное протекание электрохимической коррозии металлов (см. ч. И), т. е. изменяет механизм коррозионного процесса. [c.142]

    Глава VII КОРРОЗИОННОСТЬ ТОПЛИВ] виды КОРРОЗИИ и МЕХАНИЗМ КОРРОЗИОННЫХ ПРОЦЕССОВ [c.218]

    Оценивая коррозионную стойкость катода в зависимости от вида поляризации, необходимо четко представлять себе механизм коррозионного процесса во время катодной поляризации, которая может привести к восстановлению компонентов среды до промежуточных продуктов последние в основном и вызывают интенсивную коррозию катода. Поэтому скорость коррозии металла в стационарных условиях не является достаточным критерием для изготовления из него коррозионно-стойкого катода. [c.80]

    Известно, что от К. м. безвозвратно теряется около 10% ежегодной доСычи металла, кроме дополнительных потерь, связанных с антикоррозионными мероприятиями и ликвидацией последствий от коррозии. По механизму коррозионного процесса различают К- м. химическую и электрохимическую. Под химической коррозией подразумевают взаимодействие металлов с жидкими или газообразными веществами на поверхности металла, не сопровождающееся возникновением электродных процессов на границе раздела фаз. Напрнмер, реакции нри высоких темперагурах с кислородом, галогенами, сероводородом, сернистым газом, диоксидом углерода или водяным паром. Под электрохимической коррозией подразумевают процессы взаимодействия металлов с электролитами в водных растворах или в расплавах. Для защиты от коррозии поверхность металла покрывают тонким слоем масляной краски, лаков, эмали, другого металла, используют ингибиторы коррозии, электрохимическую защиту металлов, вводят в сплавы новые элементы, сильно повышающие коррозионную устойчивость, такие как хром, марганец, кремний и др. [c.136]

    Первопричиной коррозии металлов, в том числе и электрохимической коррозии, является их термодинамическая неустойчивость. При взаимодействии с электролитами металлы самопроизвольно растворяются, переходя в более устойчивое окисленное (ионное) состояние. Большой теоретический и практический интерес представляет механизм этого саморастворения металлов, т. е. механизм коррозионного процесса, его основные закономерности, скорость протекания процесса и характер коррозионного разрушения. [c.180]

    ДОЛЯ ЭЛЕКТРОХИМИЧЕСКОГО МЕХАНИЗМА КОРРОЗИОННОГО ПРОЦЕССА [c.279]

    Анализируя экспериментальные поляризационные кривые (см. рис. 4.39), можно получить информацию о а с, характеризующих коррозионные свойства металла, а по углу наклона анодных и катодных ветвей поляризационных кривых можно сделать заключения о механизмах отдельных реакций суммарного процесса. Снятие поляризационных кривых широко используют для изучения влияния состава раствора и добавок огранических веществ (например, ингибиторов) на кинетику и механизм коррозионных процессов. [c.272]

    Для наиболее эффективного ускорения коррозионного процесса необходимо выявить основной контролирующий фактор и воздействовать именно на него. Например, если коррозионная активность одного из компонентов агрессивной среды явно превалирует, в модельных условиях целесообразно увеличить именно его концентрацию, контролируя при этом сохранение неизменности механизма коррозионного процесса. [c.143]

    В зависимости от механизма коррозионного процесса коррозия бывает химическая, электрохимическая и биохимическая. [c.10]

    На основе результатов исследований автора с сотрудниками, а также литературных данных рассматривается коррозия и электрохимия двухэлектродных систем применительно к контактной, щелевой и питтинговой коррозии. Излагается теория вопроса и механизм коррозионных процессов. Значительное место уделено описанию методов защиты металлов и сплавов, а также готовых конструкций и аппаратов от этих опасных видов коррозии. [c.10]

    Ущерб от коррозии может быть снижен как путем рационального выбора металла при конструировании оборудования и различных сооружений, так и осуществлением конкретных мер защиты. В обоих случаях необходимо знание механизма коррозионных процессов, протекающих в условиях эксплуатации. Среди применяемых средств защиты металлов от коррозии лакокрасочные покрытия получили наибольшее распространение, но их выбор и применение далеко не всегда научно обоснованы. Это объясняется многокомпонентностью системы металл—лакокрасочное покрытие и влиянием различных факторов на поведение этой системы. [c.5]


    Механизм коррозионных процессов [c.105]

    Одним из главнейших способов классификации коррозии, который позволяет наиболее полно охарактеризовать процессы, протекающие при взаимодействии материалов и коррозионных сред, является классификация по механизму коррозионного процесса. По этому методу классификации коррозию принято делить на следующие виды коррозия химическая, электрохимическая и биохимическая. [c.49]

    Из рассмотрения механизма коррозионного процесса явствует, что основным катодным процессом при коррозии металлов в нейтральных электролитах является реакция восстановления кислорода. Поэтому если исключить эту реакцию или сильно ее затормозить, можно практически полностью подавить коррозионный процесс. На практике этот метод широко используется. В частности, процесс подготовки воды для атомных и обычных электростанций включает как один из обязательных элементов удаление кислорода. При этом в зависимости от состава конструкционных [c.249]

    Химическая коррозия наблюдается при действии на металл сухих газов, главным образом при высоких температурах (например, в двигателях внутреннего сгорания, газовых турбинах, аппаратуре синтеза аммиака идр.), а также при воздействии на металл некоторых неэлектролитов. Например, жидкий бром химически воздействуя при обычной температуре на металлы, разрушает углеродистые стали и даже титан. Расплавленная сера реагирует почти со всеми металлами, особенно сильно разъедая мель, олово, свинец. Высокую коррозийную активность сообщают нефтепродуктам растворенные в них сернистые соединения, особенно сероводород. При попадании в неэлектролиты воды значительно активизируется действие находящихся в них примесей, прп этом изменяется механизм коррозионного процесса (химическая коррозия переходит в электрохимическую). [c.357]

    Увлажнение атмосферы сопровождается изменением механизма коррозионного процесса. Слой влаги, обычно загрязненный присутствующими в воздухе химическими соединениями, играет роль электролита. Поэтому коррозия приобретает электрохимический характер. Однако в присутствии тонкого слоя электролита атмосферная коррозия металлов во многом отличается от коррозии металлов, погруженных в электролит. [c.80]

    Механизм коррозионного процесса [c.88]

    Факторы, определяющие характер и вид коррозии, весьма разнообразны. Основные причины коррозии металлов заложены в их свойствах термодинамической неустойчивости, стремлении переходить из металлического состояния в более энергетически устойчивое — оксидное или ионное состояние. Большое многообразие металлов, коррозионных сред и условий их контакта обусловливают различные виды коррозии. На рис, 23,2 приведена обобщенная классификация различных вндов коррозии металлов в зависимости от коррозионной среды характера разрушения условий эксплуатации и механизма коррозионного процесса. Первая группа не нуждается в комментариях о четвертой было сказано раньше. [c.280]

    Результатом коррозионного процесса является переход атома металла из металлической решетки в ионное состояние, т. е. образование каких-либо соединений, растворимых (обычно гидратированного иона или более сложных комплексных соединений металла) или нерастворимых, типа оксида, гидроксида. В зависимости от пути, по которому совершается этот переход, следует различать два основных возможных механизма коррозионного процесса — химический и электрохимический [7]. [c.20]

    При протекании электрохимического механизма коррозионного процесса [7] предусматривается, таким образом, определенная (стабильная или перемежающаяся) локализация анодных и катодных процессов на корродирующей поверхности. Такая дифференциация поверхности металла на анодные и катодные участки равносильна допущению существования электрохимической гетерогенности, т. е. различия в величине электрохимических потенциалов или плотностей (либо направлений) гальванических токов на поверхности корродирующего металла. [c.23]

    Из теоретического рассмотрения механизма коррозионных процессов и, в частности, из анализа основного уравнения и поляризационной диаграммы электрохимической коррозии (см. гл. I) можно вывести основные принципы создания коррозионностойких металлических сплавов (табл. 9). [c.123]

    Химтческая коррозия может протекать в некоторых жидко-стях-неэлектролитах или в процессе контакта металла с газами. "леводороды, входящие в состав нефтепродуктов и яв-ляющи( я неэлектролитами, в чистом виде не реагируют с металлами, но при наличии сернистых соединений могут вызывать 1 оррозию. При попадании на неэлектролиты воды значительно активизируется действие находящихся в них примесей, при это л изменяется механизм коррозионного процесса (химическая тюррозия переходит в электрохимическую). [c.279]

    Изложенные в предыдущих разделах вопросы механизма коррозионных процессов относились к случаям, когда скорости собственно анодных реакций растворения металлов не зависели от состава раствора. В действительности же нередко на скорости процессов растворения, явно лимитирующимися электрохимическими стадиями, влияет не только потенциал, но (при постоянном потенциале) и концентрации некоторых компонентов раствора, чаще всего анионов электролита. Эти эффекты нашли объяснения на основе развитого Я.М. Колотыркиным учения, согласно которому электрохимичес1сие реакции ионизации атомов металла, как правило, включают стадии химического или адсорбционно-химического взаимодействия поверхностных атомов металла с компонентами среды. Такое взаимодействие приводит к образованию устойчивых или промежуточных комплексов металла с компонентами раствора непосредственно в электрохимической стадии. При хемосорбции компонента, участвующего в реакции растворения металла, реализуется определенная прочность связи между адсорбированной частицей и электродом и определенная степень заполнения поверхности, возрастающие по мере смещения потенциала в положительном направлении и определяющие скорость растворения металла. [c.95]

    Защитные свойства масел в отличие от противокоррозионных свойств проявляются в том, как масло защищает металл от внешних агрессивных факторов (электролита) в ситеме электролит - масло-металл [52] о Разнообразие условий, в которых смазочному материалу приходится защищать металл от коррозии, предопределяет использование различных методов оценки защитной способности смазочного материала и его противокоррозионных свойств. При выборе методов оценки противокоррозионных и защитных свойств насел необходимо учитывать условия эксплуатации изделий и механизм коррозионного процесса, протекающего в этих условиях. [c.20]

    Ускорение коррозионного процесса не должно быть вызвано изменением его механизма. Например, при определении стойкости углеродистых и низколегированных сталей против питтинговой и язвенной коррозии даже незначительное увеличение агрессивности среды (повышение температуры, концентрации раствора, понижение pH) может привести к переводу стали в активное состояние, то есть смене механизма коррозионного процесса. [c.142]

    Увлажнение атмосферы сопровождается изменением механизма коррозионного процесса. Слой влаги, обычно зафязненный присутствующими в воздухе химическими соединениями, является электролитом. Однако в присутствии тонкого слоя электролита атмосферная коррозия металлов отличается от коррозии металлов, полностью погруженных в электролит. Во-первых, в воздушной среде процессы коррозии протекают всегда с кислородной деполяризацией, т.к. тонкий слой электролита совершенно не препятствует диффузии кислорода воздуха к поверхности металла. Во-вторых, наличие кис.торода способствует переходу металла в пассивное состояние, т.е. торможению анодного процесса. [c.63]

    Влияние легирующих элементов на жаростойкость стали с основой Х18Н20 во фтористом водороде примерно то же, что и во фтор-содеркащих растворах. Этот факт является довольно неожиданным,т.к. механизмы коррозионных процессов в растворах и газах различны. [c.61]

    В создании надежного и долговременного сооружения скважины и обеспечении охраны недр важную роль играет предотвращение или уменьшение коррозионных процессов обсадной колонны. Вопросы механизма коррозионных процессов и количественная оценка коррозии в нефтепромысловой практике еще псследованы недостаточно, и много случаев выхода из строя скважин из-за коррозии обсадных труб на месторождениях Башкирской АССР. [c.67]

    Согласно [132], изменение поверхностного натяжения от точки к точке приводит к появлению тангенциальных сил, действуюш,их на поверхность жидкости и приводящих ее в движение. Теория этого явления, названного капиллярной конвекцией, дана Левичем и имеет важное значение для понимания механизма коррозионных процессов, развивающихся в тонких слоях. При рассмотрении случая изменения поверхностного натяжения за счет незначительных температурных перепадов необходимо иметь в виду, что они, естественно, вызовут и обычное конвективное движение. Однако в тонких слоях, где поверхность жидкости достатчно велика по отношению к объему, как отмечает автор, обычная тепловая конвекция будет приводить к весьма малым скоростям движения по сравнению с теми, которые возникают из-за капиллярной конвекции. В самом деле, в случае тонких слоев поверхностные эффекты должны быть велики по сравнению с объемными, поскольку величина поверхности очень велика, а силы поверхностного натяжения весьма значительны по сравнению с гравитационными. [c.119]

    Эксплуатация металлоизделий в атмосферных условиях наиболее распространена [1—3]. Даже в жаркую и сухую погоду на металле образуется тонкая пленка воды. В тех или иных количествах вода присутствует и в нефтепродуктах, контактирующихся с металлом. Механизм коррозионного процесса в этих случаях объясняется электрохимической теорией коррозии, разработанной Ю. Р. Эвансом, Г. Б. Акимовым, Н. Д. Томашовым [1 ], С, А. Балезиным [2] и другими учеными. [c.3]

    Для определения дифференциальных токов на различных структурных составляющих и физически неоднородных участках металла необходимо установить величину стационарного потенциала и ход кривых анодной поляризации каждой структурной составляющей и физически неоднородного участка металла в координатах потенциал—плотность тока начиная ог равновесного потенциала в данном растворе. Соотношение поверхностей анодных и катодных участков, а также ход кривых катодной поляризации, влияние локальных токов и токов саморастворения учитывается ири установлении стационарного потенциала. Поэтому не требуется специального их определения, хотя для рассмотрения механизма коррозионных процессов они имеют бо.льшое значение. [c.80]


Смотреть страницы где упоминается термин Механизм коррозионного процесса: [c.426]    [c.5]    [c.359]    [c.232]   
Смотреть главы в:

Современная электрохимия -> Механизм коррозионного процесса

Защита силовых кабелей от коррозии -> Механизм коррозионного процесса

Коррозия и коррозионностойкие сплавы -> Механизм коррозионного процесса




ПОИСК





Смотрите так же термины и статьи:

Коррозионные механизм

Механизм процесса

Процессы коррозионные



© 2025 chem21.info Реклама на сайте