Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика экстрагирования растворенных веществ

    Изложение кинетики экстрагирования растворенного вещества начнем с рассмотрения изотропного пористого тела сферической формы, в пористом объеме которого содержится раствор целевого компонента с первоначальной концентрацией С ходом экстрагирования концентрация примет значение с, различное в каждой точке объема частицы и в разное время экстрагирования. Поле концентраций внутри пористого объема может быть описано дифференциальным уравнением диффузии в сферических координатах  [c.282]


    Адсорбция некоторых веществ на границе раздела фаз может приводить К образованию поверхностных слоев, резко изменяющих свойства границы раздела фаз и ее окрестностей. Важнейшим свойством таких слоев, издавна использующимся на практике, является их способность играть роль межфазных структурно-механических барьеров (СМБ), замедляющих коалесценцию капель и расслаивание эмульсий. В производственной и лабораторной практике экстрагирования неорганических веществ также часто приходится сталкиваться с образованием относительно устойчивых эмульсий, что сильно вредит проведению непрерывных процессов. Это особенно характерно для экстракции многовалентных элементов, склонных к гидролизу и гидролитической ассоциации, а также растворов, содержащих взвеси, коллоидные частицы и высокомолекулярные ПАВ. Показано [61—63, 86], что именно в этих случаях образуются межфазные пленки (СМБ), обладающие повышенной вязкостью или даже механической прочностью. Их толщина достигает 10 см. Пленки оказывают сильное влияние на кинетику экстракции. [c.181]

    При рассмотрении процессов извлечения целевого компонента из пор твердого материала, как правило, учитывают два возможных случая в зависимости от того, содержится ли экстрагируемое вещество до начала процесса в виде раствора в каком-то растворителе или в твердом (но растворимом) состоянии. В последнем случае в начальный период экстрагирования происходит смачивание твердой фазы растворителем, з атем начинается проникновение растворителя внутрь пор и, наконец, экстрагируемое вещество растворяется и диффундирует в жидкость, окружающую частицу. При обработке экстрагентом большинства растительных материалов скорость экстрагирования обычно определяется диффузионным извлечением, при экстрагировании минерального сырья кинетика процесса зависит от скорости растворения, реакции взаимодействия целевого компонента с растворителем и диффузии. [c.110]

    Поскольку не существует абсолютно нерастворимых веществ, следует рассмотреть также схему, представленную на рис. 10-1, в. Согласно ей, экстрагируемым соединением является вещество, непосредственно присутствующее в водной фазе. При этом экстрагент (учитывая наличие в системе разбавителя точнее было бы назвать эго вещество экстракционный реагент [10]) связывает диффундирующий в органическую фазу компонент. Такая схема при экстракции в системах электролит — неэлектролит рассмотрена, например, Оландером и Бенедиктом [1511, которые изучили кинетику экстракции HNOa растворами три-н-бутилфосфата. Хотя в результате анализа полученных данных авторы пришли к заключению, что сольватация происходит на границе раздела фаз, этот режим реагирования, по их мнению, является предельным при протекании реакции в объеме органической фазы. К сожалению, Оландер и Бенедикт исключили возможность взаимодействия в объеме водной фазы и истинно гетерогенное реагирование. В то же время анализ литературных данных показывает, что убедительных примеров экстрагирования неорганических веществ по схеме на рис. 10-1, в нет. Скорее всего экстракция по такому механизму вносит очень незначительный вклад в процесс извлечения неорганических веществ большинством практически важных экстрагентов. [c.381]


    Особенно эффективно определение по полярографическим максимумам различных красителей и высокомолекулярных веществ, адсорбционная способность которых связана, главным образом, с большим размером их молекул. В настоящее время имеется значительное число работ по применению полярографических максимумов для анализа и исследования высокомолекулярных веществ. В частности, имеется ряд работ по использованию полярографических максимумов для контроля кинетики образования полимеров [83], а также для определения растворимости полимеров в растворителях по изменению концентрации высокомолекулярного соединения в растворе, определяемой с помощью полярографических максимумов. Герачек и Малкус использовали, например, эффект подавления кислородных максимумов при анализе водных экстрактов синтетических смол для характеристики экстрагирования растворимых продуктов [84]. [c.68]

    В практике экстрагирования всгречаются случаи, когда целевой компонент находится в инертном носителе как в виде раствора, так и в виде твердого вещества. Кинетика извлечения целевого компонента зависит от его агрегатного состояния и описывается различными уравнениями. Приведенные ниже теоретические модели не позволяют напрямую рассчитывать реальные процессы экстрагирования, однако они полезны для более глубокого понимания его механизма. Вместе с тем в ряде случаев удается отождествить частицы сырья с изотропными телами простейшей формы (шаром, пластиной, цилиндром) и, после экспериментального определения эффективных коэффициентов диффузии извлеченного компонента в реальных пористых телах, использовать модели для расчета промышленных аппаратов. [c.456]

    Недавно была изучена природа этой основной субъединицы для дезоксирибонуклеиновой кислоты, выделенной из Е. oli [1771. Нуклеиновая кислота после экстрагирования и депротеинизации имела молекулярный вес 11-10 (светорассеяние). Нагревание вещества в растворе хлористого цезия снижало молекулярный вес до 5,6-10 , в то время как обработка химотрипсином (или смесями хлороформ — октиловый спирт) давала полимер с молекулярным весом 2,4-10 , который имел нормальную S-образную кривую зависимости оптической плотности от температуры с точкой перегиба при 92°. Нагревание этой последней нуклеиновой кислоты в хлористом цезии (7,7 М) понижало молекулярный вес до 1,3-10 , но при этом образовывался двуцепочечный полимер, что было показано изучением кинетики ферментативного (дезоксирибонуклеаза Н) гидролиза. В отсутствие обработки хлористым цезием тем же методом было показано наличие четырехцепочечных образцов, и, следовательно, можно было предположить, что исходная ДНК из Е. соИ представляет собой димер из параллельно связанных друг с другом двойных спиралей, причем каждая двойная спираль сохраняется незатронутой при делении клеток. Белковые связи, как, например, в агрегате с молекулярным весом 11-10 , устойчивы к нагреванию в хлористом цезии, хотя эта обработка разрывает димеризующие связи между парами оснований в двухспиральных структурах [1771.  [c.559]


Смотреть страницы где упоминается термин Кинетика экстрагирования растворенных веществ: [c.91]    [c.91]    [c.220]   
Процессы и аппараты химической технологии Часть 2 (2002) -- [ c.282 ]

Процессы и аппараты химической технологии Часть 2 (1995) -- [ c.282 ]




ПОИСК





Смотрите так же термины и статьи:

Экстрагирование



© 2025 chem21.info Реклама на сайте