Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полярографический метод область применения

    Одной из наиболее важных особенностей полярографии является возможность применения ее в качестве инструментального метода анализа. Эта особенность и обусловила широкое и быстрое развитие полярографического метода и применение его в различных областях химии и смежных наук, так как любые проблемы, которые разрешаются с помощью полярографии (изучение кинетики химических реакций, исследование состояния молекул в растворе и т. д.), основываются в первую очередь на аналитических данных. Существенным преимуществом полярографии является то, что она часто позволяет проводить одновременно как качественный, так и количественный анализ. [c.297]


    Назвать области применения, достоинства и недостатки полярографического метода анализа. [c.178]

    Характеристика метода. Область, применения. Полярография дает возможность проводить некоторые определения, которые нельзя осуществить другими методами, особенно в области анализа органических веществ. В неорганическом анализе полярографические методы в ряде случаев оказываются наиболее простыми в выполнении (например, определение цинка и кадмия при их одновременном присутствии). Кроме того, полярографически можно иногда сразу определять несколько элементов. [c.424]

    Отличительные особенности и области применения полярографического метода. Области применения полярографического метода чрезвычайно обширны. В аналитической химии он применяется для качественного и количественного анализа. [c.162]

    Область применения полярографического метода анализа. Полярографическим методом можно определять как неорганические, так и органические вещества, способные восстанавливаться или окисляться на по- [c.336]

    В анализе многих органических соединений полярографический метод вообще незаменим. В связи с этим можно предполагать, что в будущем эта область окажется наиболее важной для применения полярографии. [c.285]

    Области применения рассмотренных вариантов полярографического метода анализа представлены в табл. 17. [c.111]

    Прежде чем рассказать о многочисленных достоинствах и областях применения полярографического метода, очевидно, надо ответить на вопрос, зачем при полярографических измерениях используют такой необычный электрод — каплю ртути. Ведь при измерениях на обычных твердых электродах также должно наблюдаться волнообразное увеличение тока с площадками предельного тока диффузии. Дело в том, что поверхность капающего ртутного электрода через каждые 2—6 секунд обновляется. Благодаря этому электрохимическая реакция постоянно происходит на свежей металлической поверхности. Она не искажается из-за загрязнения продуктами реакции, образующимися в процессе разряда. Да и характер концентрационной поляризации, которая происходит на капельном электроде, не совсем обычен. Расчеты показывают, что за время жизни одной капли стационарное состояние диффузии не успевает установиться. Значит, диффузионный слой не достигает столь большой толщины, как нри измерениях на стационарных электродах, а поэтому предельные токи диффузии на капельном электроде более высокие. Таким образом, капельный ртутный электрод оказывается удобным и для исследования кинетики электрохимических реакций. [c.56]


    Области применения метода разнообразны. Его можно использовать для исследования механизма электродных процессов, для определения ряда физико-химических констант, изучения кинетики химических реакций, установления состава и прочности комплексных соединений в растворах и т. п. С другой стороны, полярографический метод широко применяется и в аналитической химии для качественного обнаружения и особенно для количественного определения многих неорганических и органических веществ. [c.209]

    В следующих разделах будут даны наиболее важные случаи применения полярографических методов при анализе полимеров, их компонентов, а также некоторых наиболее распространенных материалов, применяемых в производстве полимеров. Все описанные методы основаны на использовании необратимых систем исключение составляют лишь реакции гидрохинона и азосоединений, которые являются обратимыми. Систематическое развитие органической полярографии, необходимое для преодоления ее современного в известной степени эмпирического уровня, непосредственно зависит от понимания кинетики необратимых процессов. В этой области в высшей [c.366]

    В основу современных инструментальных методов определения растворенного в воде кислорода положен весьма распространенный в электрохимии метод измерения предельного диффузионного тока (полярографический метод), при котором кислород восстанавливается на отрицательно заряженном металлическом электроде. В принципе возможно применение как ртутного капельного, так и открытых твердых электродов из благородных металлов. Однако ртутный электрод крайне неудобен в практике, а поверхность твердых нужно непрерывно очищать. Поэтому в современных анализаторах на кислород применяются твердые электроды, защищенные тонкой полимерной пленкой хорошо проницаемой для кислорода и являющейся надежным барьером для молекул воды и большинства других веществ. Приборы с электродами, защищенными полимерной пленкой, разрабатываются или уже выпускаются во всех странах, которые можно считать ведущими в области очистки сточных вод. Именно такие приборы рекомендованы для применения странами-участницами СЭВ. [c.110]

    Полярографические методы (катодная и анодная полярография, амперометрия) нашли ограниченное применение в исследовании неуглеводородных компонентов нефти, главный образом при изучении индивидуальных соединений. Возможные области группового анализа этими методами ограничены узкими рамками решения специальных задач. [c.24]

    Область применения полярографического метода анали-3 а. Полярографическим методом можно анализировать как неорганические, так и органические вещества, способные восстанавливаться или окисляться на поверхности электродов при прохождении постоянного электрического тока. Поэтому полярографические определения широко используют в заводских и научно-исследовательских химико-аналитических лабораториях. Особенно широко полярографический метод анализа применяют [c.261]

    Одним из многообещающих аспектов применения органических растворителей в полярографии комплексов является возможность анализа металлов после экстракции их хелатов. Сочетание этой экстракции с последующим полярографированием неводного экстракта нри определенных условиях не только повышает селективность метода определения, но и его чувствительность [16]. Увеличение чувствительности можно достигнуть, переводя испытуемое вещество из большого объема водной фазы в небольшой объем органического растворителя для полярографирования. Этот метод успешно применяется для анализа следов металлов, например при определении свинца в виде диэтилдитиокарбамата, экстрагированного хлороформом, в тройной смеси растворителей хлороформ, метилцеллозольв и вода [17]. Последняя смесь очень часто применяется в подобных исследованиях. Метилцеллозольв выполняет в этом случае функцию гомогенизатора системы, где хлороформ служит экстрагентом, а вода создает условия для проводимости. Однако такая смесь дает сравнительно узкую область возможной поляризации р.к.э. — до 0,8 в (нас. к.э.). Рациональное использование экстракционно-полярографического метода основано на знании электрохимических свойств соответствующих комплексов, поэтому изучение последних в органических средах имеет значение и в этом отношении. До сих пор не делалось попыток обобщить накопленный материал по полярографии комплексов с органическими лигандами в органических и смешанных растворителях. [c.258]

    Чтобы устранить полярографические максимумы и получить нормальные полярограммы, в исследуемые растворы вводят добавки различных поверхностно-активных веществ. Наиболее эффективны поверхностно-активные вещества молекулярного типа, например желатина,а также различные красители. Механизм действия таких веществ можно объяснить при помощи электрокапиллярных кривых (рис. 58). В присутствии поверхностноактивных веществ молекулярного типа межфазное натяжение остается практически постоянным в широкой области потенциалов. В этом случае Да оказывается близкой к нулю и не может обеспечить энергичного тангенциального движения поверхностных слоев ртути. Способность к подавлению полярографических максимумов находится для данного поверхностно-активного вещества в прямой зависимости от его концентрации в растворе. Эти результаты позволили создать чувствительный метод количественного определения поверхностно-активных веществ и, следовательно, расширили область применения полярографии. Изучение полярографических максимумов приобрело, таким образом, еще больший интерес. [c.340]


    В настоящее время метод вращающегося диска общепризнан в качестве метода исследования кинетики умеренно быстрых реакций. Метод находит широкое применение в анализе благодаря возможности определения веществ, которые реагируют с электродом в области положительных потенциалов, а также потому, что при применении диска протекают значительно большие токи, чем, например, в полярографическом методе. Это позволяет анализировать относительно разбавленные растворы (порядка 10 моль/л). [c.55]

    Область применения полярографического метода анализа. [c.452]

    Наряду с ртутными электродами в полярографии нашли применение твердые стационарные и вращающиеся электроды из различных металлов — платины, золота, серебра и др. Сила диффузионного тока на вращающемся электроде выше, чем на стационарном, и увеличивается в зависимости от числа оборотов электрода, что обусловливает значительное повышение чувствительности метода. Использование твердых электродов расширяет область применения полярографического метода. [c.62]

    Использование твердых вращающихся электродов вместо обычно применяемых капельно-ртутных катодов позволило значительно расширить область применения полярографического метода в газовом анализе [26]. С помощью твердого вращающегося платинового микрокатода и платинового анода удалось разработать методики определения хлористого, бромистого и цианистого водорода, а также озона, хлора и других окислителей. Метод определения хлористого, бромистого и цианистого водорода основан на связывании анионов хлора, брома и циана с катионом серебра на основном электролите, состоящем из растворов НМОз и К1 0з. Избыток серебра определяют после этого на вращающемся платиновом катоде. Метод позволяет определять концентрации ионов хлора, брома и циана порядка 0,5—1,0 у-г в 1—2 мл жидкости. В основу метода определения [c.225]

    В настоящее время для исследования и анализа органических соединений широко применяются физико-химические методы, и в частности, в контроле производства и при исследовании органических веществ все чаще находит применение полярографический метод. Об этом говорит, в первую очередь, большое число печатных работ в области полярографии органических соединений, составляющее, по-видимому, самое значительное количество публикаций по сравнению с другими методами Последнее можно связать с основными особенностями этого метода, выгодно выделяющими его среди других физико-химических методов  [c.5]

    Указанные направления использования полярографии в полимерной химии требуют дальнейшего развития. Вообще имеющиеся в настоящее время данные, изложенные в этой книге, явно не исчерпывают тех больших возможностей, которые открывает применение полярографического метода в современном его виде в этой области химии. [c.6]

    Реальные ячейки, содержащие растворы, которые исследуются современными полярографическими методами, по-существу такие же, как в постояннотоковой полярографии, и об этой области полярографического анализа мало что можно сказать в дополнение к тому, что уже содержится в литературе по постояннотоковой полярографии, процитированной в гл. 1. В ссылках (90, 91] имеется дополнительная информация. Объемы растворов составляют от 1 до 50 мл, а устройство ячеек чрезвычайно разнообразно, применительно к потребностям конкретных определений и применений. Многие приборы укомплектовываются стандартными полярографическими ячейками и вспомогательными устройствами для удобства и простоты полярографи- [c.289]

    Применение полярографического метода ограничивается обратимыми процессами (имеется в виду обратимость процесса как образования и диссоциации комплекса, так и электродных реакций) и, естественно, охватывает комплексы, металло-ион которых способен восстанавливаться иа ртутном катоде. Если к раствору металло-иона, имеющего потенциал полуволны 1/ , добавить вещество X, то в случае образования комплекса МХр потенциал полуволны сдвинется в отрицательную область. Ниже будет [c.139]

    Область применения полярографического метода анализа. Полярографическим методом можно анализировать как неорганические, так и органические вещества, способные восстанавливаться или окисляться на поверхности электродов при прохождении постоянного электрического тока. Поэтому полярографические определения широко используют в заводских и научно-исследовательских химико-аналитических лабораториях. Особенно широко полярографический метод анализа применяют при анализе сплавов и руд, а также при определении малых количеств примесей в чистых металлах. [c.253]

    Укажем только, что, кроме теоретического значения, эти исследования необходимы для выбора наиболее устойчивых к радиационному воздействию сцинтилляционных систем. При этом, как следует из имеющихся работ в этой области [55, 56 и др.], при ионизирующем облучении пластмассовых сцинтилляторов возможно разрушение и полимерной основы сцинтилляторов и люминесцентных добавок. В одном из наших сообщений совместно с Нагорной [57] было показано, что при уоблу-чении полистирольных сцинтилляторов дозой 4-10 рад происходит снижение их сцинтилляционной эффективности примерно на 50%. В известной нам литературе до наших работ не было однозначного ответа на вопрос, чем обусловлено такое ухудшение сцинтилляционных характеристик. Применявшиеся в основном оптические методы исследования позволяли проследить суммарный эффект, контролировать же раздельно изменения, происходящие в полимере и в люминесцентных добавках при различных воздействиях, практически не удавалось. Применяемые при изготовлении пластмассовых сцинтилляторов люминофоры (производные оксазола-1,3, оксадиазола-1,3,4, пиразолина-Д и стильбена) образуют при восстановлении на ртутном капельном электроде полярографи ческие волны. Поэтому мы использовали для изучения поведения люминесцентных добавок в пластмассовых сцинтилляторах полярографический метод [58]. Применение этого метода позволило непосредственно контролировать изменение концентрации люминофоров независимо от основы сцинтилляторов и, таким образом, дало воз- [c.189]

    Развитию полярографии органических соединений в СССР мы обязаны инициативе и энергии проф. Неймана, который начал со своими учениками работать в этой области в конце 30-х годов. Его первые работы были посвящены определению перекисей, альдегидов и кетонов среди продуктов холоднопламенного горения углеводородов [36—38]. В начале 40-х годов в Риге Огринем и Брауном [39] полярографический метод был применен для аналитического определения альдегидов, в частности цитраля, в эфирных маслах. [c.7]

    Общая формула комплексного иона может быть безупречно установлена в случае обратимой электродной реакции, если комплекс в достаточно широкой области концентраций комплек-сообразующего компонента обладает постоянным, стехиометри-чески однозначно определяемым составом. Если в исследуемом концентрационном интервале присутствуют одновременно несколько комплексов, то можно — при условии обратимости электродных реакций — определить суммарные формулы одноядерных комплексов методами, описанными в этой главе. По сравнению с константами, получаемыми потенциометрическими методами, константы устойчивости, определяемые полярографически, несколько менее надежны. Полярографические волны в большинстве случаев имеют не идеальную форму, а в большей пли меньшей степени искажены, что делает определение потенциалов полуволны ненадежным (непостоянство тока насыщения, слишком малая крутизна подъема волны). Определяемые таким образом константы комплексообразования справедливы только для того растворителя, в котором проводились измерения. Исследуемые растворы всегда содержат значительные ко--личества индифферентных электролитов, что сильно сказывается на величинах коэффициентов активности реагирующих веществ. В этом состоит принципиальный недостаток полярографического метода по сравнению с другими методами, при которых не требуется добавки электролитов. Однако, с другой стороны, полярографический метод, как уже указывалось во введении, обладает определенными преимуществами, которые в отдельных случаях могут иметь решающее значение для его применения. [c.250]

    Я- Гейровский. Полярографический метод. Химтеорет, 1937, (226 стр.). Автор является основателем полярографического метода анализа. В его книге из. ложены теоретические основы метода, рассматриваются виды электровосстановления-дается объяснение максимумов . В практической части описана аппаратура, техника проведения полярографирования и случаи применения метода в химическом анализе и др. областях. Приведена полная библиография работ по полярографии с 1922 по 1937 гг. [c.488]

    Свойством восстанавливаться на ртутном капающем электроде обладают не только неорганические соединения, но и органические ионы и молекулы. Впервые, еще в 1925 г., был получен диффузионный ток для нитробензола (М. Шиката), и с тех пор появилось большое число работ (значительно больше, чем для неорганических соединений), посвященных изучению условий восстановления различных органических соединений и применению полярографического метода к их исследованию и аналитическому определению. Такое распространение полярографического метода в область органической химии связано, с одной стороны, с большим разнообразием применения органических соединений и, с другой, — с ограниченностью и сложностью обычных химических методов их аналитического определения. Полярографический метод, кроме своей простоты, позволяет не только относительно быстро и достаточно точно количественно определять то или иное вещество, но также дает возможность во многих случаях определить природу неизвестного соединения, выявить наличие тех или иных групп в исследуемом веществе, т. е. помогает определить строение органических соединений. Для решения последнего вопроса, в частности, используются такие полярографические данные  [c.27]

    Полярографический метод определения бензоилпероксида в эмульсионном полиметилметакрилате, реакционных средах и маточниках после полимеризации предложен в [268]. В отличие от многих рекомендаций применять для получения полярографических волн этого пероксида в качестве фона Li l, на котором не удается подавить максимумы, искажающие форму волны, мы предложили в качестве фона 2%-й раствор NH4NO3 в смеси бензол метанол (1 4). На этом фоне в присутствии метилового красного удалось получить четко выраженные полярографические волны пероксида бензоила (рис. 5.1). Волна лежит в области 1/2 =+0,27 В (отн. нас. к. э.), Kd = 4J. Величина предельного тока линейно зависит от концентрации пероксида бензоила. Разработанная методика определения этого вещества в полиметилметакрилате проверена на фоне NH4NO3 с применением искусственных смесей, приготовленных в присутствии полимера, и показала удовлетворительные результаты. [c.166]

    В последние годы получили развитие работы в области применения полярографического метода для изучения электрохимических превращений полимеров, в том числе для изучения электрохимической деструкции полимерных молекул. Отметим некоторые из этих работ. Кузнецов с сотр. [314] исследовали особенности электрохимических реакций полимерных четвертичных солей, восстановление которых протекает с участием пиридиниевых катионов. В работах Барабанова и сотр. [315, с. 46] представлены данные по изучению восстановления поли-Ы-этил-2-метил-5-винилпиридинийбромида и сополимера 2-ме-тил-5-винилпиридина с метилметакрилатом методами циклической вольтамперометрии. Наблюдающиеся на поляризационных кривых два пика авторы связывают с различным энергетическим состоянием отдельных восстанавливающихся звеньев адсорбированных макромолекул. Этими же авторами исследованы и другие полимерные системы. [c.205]

    В книге в сжатой форме приводятся основные положения теории методов полярографии постоянного и переменного токов, высокочастотной, импульсной и осциллогра-фической. Рассматриваются лабораторные поляропрафы различных типов, полярографические концентр,атомеры и анализаторы промышлениого назначения, их метрологические характеристики и области применения. [c.2]

    Окислительно-восстановительное титрование и полярография в течение последних двадцати — тридцати лет стали важными мего-дами анализа в органической химии. Потенциометрическое титрование основано на прямой пропорциональности между количеством вещества в титруемом растворе и объемом титрующего агента, необходимым для достижения точки эквивалентности (определяется либо потенциометрически, либо при помощи окислительно-восстановительного индикатора). Полярографические же определения основаны большей частью на пропорциональности между током электролиза и концентрацией деполяризатора в растворе. Несмотря на сходство химических основ обоих методов, их возможности и области применения несколько различны. Потенциометрия является без сомнения более точной как в отношении количественного анализа, так и для определения потенциалов (последнее отражается в более высокой точности физико-химических результатов, вычисленных из потенциометрических данных). Например, при потенциометрическом титровании точность определения обычно порядка около десятых долей процента, в полярографии — около 2—3%. Потенциалы измеряются с точностью 1 мв [c.260]

    Область применения полярографического метода анализа. Полярографическим методом можно анализировать как неорганические, так и органические вещества, способные восстанавливаться или окисляться на поверх ностй электродов при прохождении постоянного электрического тока. [c.313]

    В настоящее время существует несколько методов, позволяющих находить растворимость малорастворимых веществ. Значительная их часть основана на проведении кондуктометрических, потенциометрических или полярографических измерений в растворе исследуемого соединения. Такие измерения с достаточной степенью точности могут быть выполнены только для хорошо диссоциирующих веществ, растворенных в полярных растворителях, что существенно ограничивает область применения этих методов. Значительно большей универсальностью обладает метод определения растворимости, основанный на применении радиоактивных индикаторов. Впервые он был предложен Г. Хевеши и Ф. Пакетом в 1913 г. для малорастворимых солей свинца, меченных природным радиоактивным изотопом КаД ( ФЬ), и несколько позднее использовался Вл. И. Спицьшым для определения растворимости соединений тория. [c.239]

    Пз приведенного обзора след5 ет, что применение полярографического метода в области пластических масс в общем может быть реко юпдовано в следующих направлениях  [c.145]

    Комплексон совершенно не оказывает влияния на высоту, форму и наклон этой волны. В отсутствие комплексона определению урана мешают катионы, восстанавливающиеся вблизи области восстановления уранилового комплекса. В присутствии комплексона марганец, никель, кобальт и цинк определению не мешают, так как их комплексы в этих условиях полярографически не выявляются [7] (см. полярограмму 5). Только присутствие свинца делает определение урана невозможным (об определении урана в присутствии свинца и комплексона IV см. стр. 240). Указанный метод был применен для анализа некоторых минералов, например ауксенита и т. п. [c.226]

    Классические и широко читаемые книги по электроаналити-ческой химии 50-х и 60-х годов посвящены достижениям в этой области, но, очевидно, они бесполезны как руководства по применению современных электрохимических методов для решения химических задач. Профессор Бонд в своей монографии описывает современные полярографические методы, приводя примеры, экспериментальные детали и, что самое важное, высказывая свои собственные суждения об относительных достоинствах и преимуществах разных методов. Мы надеемся, что предлагаемая книга будет способствовать доведению этой трансформирующейся области электроаналитической химии до нового и высокого уровня совершенства. [c.9]

    В этой книге я попытался описать области применения современных полярографических методов. Б моих лабораториях обычную постояннотоковую полярографию для анализа исполь-зз ют или рекомендуют редко, лоскольку любое определение, которое можно выполнить методом обычной постояннотоковой полярографии, можно сделать быстрее, точнее или дешевле посредством современных полярографических методов. Так как, с (ОДНОЙ стороны, легкодоступны высококачественные и недорогие серийные приборы, а с другой — в современной хорошо оборудованной аналитической лаборатории или в высшем учебном заведении относительно просто сконструировать собственный прибор, то при серьезном отношении к полярографическому анализу более современные его разновидности должны стать доступными. Ясно поэтому, что при прочих равных условиях в текущей аналитической работе предпочтение следует отдавать этим методам, а не обычной постояннотоковой полярографии. В обычной постояннотоковой полярографии используют хорошо известные кривые ток — напряжение, которые получают путем наложения постоянного напряжения на капающий ртутный электрод, период капания которого в пределах 2—ГО с определяется силой тяжести, и электрод сравнения. Этот вариант полярографии будет представлен лишь как средство, удобное для обучения, и как исходная позиция для последующих рассужде- ний. Тех же, кто желает озна комиться подробно с историей, теорией и практикой обычной постояннотоковой полярографии, мы отсылаем к литературе [6—12]. Описание современных полярографических методов весьма поучительно, и оно делается для того, чтобы привлечь внимание хорошо подготовленных аналитиков к последним достижениям в этой области. В описа-яии методов пространные математические выкладки, в общем, будут опущены и результаты этих выкладок будут приводиться без выводов, чтобы больше внимания уделить обсуждению их значения непосредственно для практики. [c.15]

    Инверсионная вольтамперометрия нашла чрезвычайно широкое применение в исследованиях окружающей среды, и в настоящее время значительная часть литературы по аналитической полярографии (вольтамперометрии) посвящена этому методу. Ряд обзоров отражает широкий интерес к этой области вольтамперометрического анализа, и работы [9—15] обеспечивают самый полезный охват конкретных аспектов этого направления, а также обширную библиографию применения метода. Обзор Барендрехта [9] и книги Нэба [10] и Брайниной [14] особенно пригодны для специалистов, предполагающих впервые использовать инверсионную вольтамперометрию. Важно, что в этих статьях обсуждаются особенности различных методов инверсионной вольтамперометрии. Имеет смысл отметить, что так как этот метод применим к чрезвычайно разбавленным растворам (10- ЛГ и иногда ниже), то для успешного использования инверсионной вольтамперометрии необходимо экспериментальное мастерство и опыт. Кроме того, хотя несомненно, что это самый чувствительный из применяемых полярографических методов, который в то же время исключительно прост в теоретическом описании и аппаратурном оформлении, следует помнить, что в действительности — это очень сложный метод, и вероятность получения ошибочных результатов в нем больше, чем в других методах. Поэтому особенно важно, чтобы при использовании инверсионной вольтамперометрии в общую аналитическую методику была включена строгая процедура оценки данных. Например, даже если нет никаких опасений, всегда следует строго проверять, как было рекомендовано для всего полярографического анализа, что форма волн и положение пиков на кривых анализируемого объекта и стандарта одинаковы. [c.523]

    Полярографический метод анализа и метод амперометрического титрования нашли широкое применение в различных областях как неорганической, так и органической химии. Быстрота анализа, возможность отделения нескольких компонентов в смеси без предварительного разделения завоевали полярографическому методу анализа признание в аналитических научно-исследовательских и заводских лабораториях. Особенно широко полярографический метод анализа используется в геологии при анализе руд, а также в металлургии при анализе сплавов и определении малых количеств примесей в чистых металлах. Методом полярографического анализа на обычных полярографах можно определять малые количества примеси, порядка 10 и даже й некоторых случаях 10 %. Однако в настоящее время, когда требуется определять присутствие редких и рассея1шых элементов, содержание которых в образцах определяется десяти- и стотысячными долями процента, полярографический метод применяется после -предварительного разделения и обогащения, проведенных различными химическими способами, как на- пример собсаждением и экстракцией или сочетанием хроматографии с полярографией. Последнее, новое направление названо хроматополярографией. Необходимость определения чрезвычайно малых количеств примесей стимулировала поиски новых усовершенствований и видоизменений полярографического метода. [c.7]


Смотреть страницы где упоминается термин Полярографический метод область применения: [c.409]    [c.317]    [c.340]    [c.602]    [c.76]    [c.14]    [c.8]   
Быстрые реакции в растворах (1966) -- [ c.189 ]




ПОИСК





Смотрите так же термины и статьи:

Метод полярографический

Область применения

Полярографический метод, Потенциостатический метод область применения



© 2024 chem21.info Реклама на сайте