Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика реакций образования и деструкции полимеров

    КИНЕТИКА РЕАКЦИЙ ОБРАЗОВАНИЯ И ДЕСТРУКЦИИ ПОЛИМЕРОВ [c.351]

    Кинетика реакций образования и деструкции полимеров [c.339]

    Строго говоря, присоединение каждого нового остатка мономера к цепи полимера представляет собой новую химическую реакцию п образование молекулы полимера происходит в результате большого числа последовательных стадий. Система дифференциальных уравнений, описывающая кинетику такого процесса, содержит большое число уравнений и не может быть строго проинтегрирована. Это же относится и к обратным процессам превраш,ения полимера в мономер или другие низкомолекулярные соединения (деструкция полимеров). Однако, как правило, можно считать, что увеличение или уменьшение длины полимерной частицы (молекулы или свободного радикала) не меняет существенно реакционной способности этой частицы. Это дает возможность рассматривать в первом приближении образование полимерной молекулы не как последовательность большого числа различных стадий, а как многократное повторение одной и той же реакции. Тем самым становится возможным рассматривать рост или деструкцию полимера как сравнительно простой процесс, состоящий, в зависимости от механизма реакции, из одной или нескольких элементарных стадий. [c.354]


    В трех последующих параграфах рассмотрены основные поло-л<ения кинетики образования полимеров по реакциям трех указанных типов. При этом главное внимание уделено тем специфическим вопросам, которые возникают в связи с полимерной природой продукта реакции. В первую очередь это вопрос о распределении по молекулярным массам в полученном полимере. Синтезированные полимеры, равно как и фрагменты, возникающие при деструкции полимеров, представляют собой сложную смесь молекул разной длины. Количественное соотношение между этими молекулами задается функцией распределения, которая представляется как молярная (iu ) или массовая (yJ доля молекул, содержащих х мономерных звеньев  [c.421]

    Примером влияния морфологии полимеров на их химические свойства может служить снижение скорости окисления кристаллизующихся полимеров при нх ориентации и кристаллизации при растяжении. В качестве примера зависимости кинетики реакции от наличия надмолекулярных образований можно привести термоокислительную деструкцию полипропилена. Эта реакция идет преимущественно в аморфных областях. Еслн же сравнивать кинетику реакций в образцах с разной кристаллической структурой, то оказывается, что крупно-сферолитный полипропилен окисляется медленнее, чем мелко-сферолитный. [c.161]

    Основная задача при экспериментальном изучении кинетики деструкции полимеров состоит в установлении зависимости между измеряемыми интенсивностями пиков в масс-спектре и скоростями образования продуктов, вносящих вклад в эти пики. В случае когда скорость реакции соизмерима со скоростью откачки продуктов реакции, скорость образования /-го компонента спектра связана с интенсивностями пиков соотношением [c.145]

    Гидролитическая деструкция целлюлозы в гомогенных средах протекает по закону случая. Статистика и кинетика этого процесса могут быть изучены при помощи методов, аналогичных тем, которые используются при теоретическом анализе реакции поликонденсации. Рассмотрим полимер с бесконечно большим числом равноценных валентных связей в основной цепи. Если вероятность разрыва любой связи равна р, то вероятность того, что разрыв не произойдет, будет 1 — р. При деструкции до образования х-мера необходимо, чтобы две связи разорвались (вероятность р ) и х—1 связей оставались без изменения [вероятность (1—рУ - [c.624]


    При низких температурах (<250°) происходит образование гидроперекисей, которые могут быть выделены протекающие в этих условиях реакции в основном аналогичны реакциям олефинов. При температуре 300—400 кинетика процесса становится более сложной, что связано с протеканием цепных реакций с участием альдегидов и гидроксильных радикалов [118] выше 400° эти реакции становятся определяющими. При таких высоких температурах гидроперекиси весьма не стабильны, а радикал КОз-, если он вообще образуется, должен немедленно разлагаться. Это коренное изменение механизма процесса выражается, например, в сложном характере зависимости скорость — температура в области промежуточных температур. Рис. 76 [119] показывает, что максимальная скорость окисления метилэтилкетона может уменьшаться при повышении температуры. Другое очень важное различие между высоко-и низкотемпературными реакциями заключается в почти полном отсутствии влияния строения окисляемого соединения на скорость процесса при высоких температурах, проявляющегося очень резко при низких температурах. При высоких температурах большинство полимеров претерпевает значительную термическую деструкцию и сильно деформируется, что приводит к потере ими свойств, ценных с точки зрения практического использования. Поэтому достаточно рассмотреть только низкотемпературный механизм окисления модельных соединений. [c.177]

    При введении в ПЭ более 9% (масс.) технического углерода вид кинетических кривых окисления изменяется (см. рис. 4.5) [186]. На начальном участке скорость термоокисления ПЭ снижается с увеличением концентрации наполнителя. Однако через 0,3 ч после начала окисления она резко возрастает, причем тем выше, чем больше концентрация технического углерода. Эти особенности кинетики термоокисления наполненного ПЭ объясняют [186] тем, что в процессе окисления макромолекулы полимера взаимодействуют с поверхностными группами технического углерода с образованием химических связей. Эти связи затрудняют тепловые движения цепей при температурах разложения ПЭ. Кроме того, термоокисление полимера сопровождается деструкцией макромолекул, которая приводит к разрушению образовавшейся пространственной сетки. С увеличением концентрации технического углерода в ПЭ процесс структурирования полимера преобладает и при достижении определенной плотности сшивания ПЭ начинают изменяться скорости некоторых реакций термоокисления. [c.140]

    Изучение кинетики образования ПАК показало, что реакция заключается в нуклеофильной атаке аминогруппы с раскрытием ангидридного цикла и достигает равновесия после того, как прореагирует примерно 78% диангидрида. Растворы ПАК мало стабильны при хранении, так как под действием воды и при разбавлении протекает гидролитическая деструкция. Поэтому растворы ПАК (обычно 15—25%-ные) сразу же после приготовления используют для переработки в изделия (пленки, волокна и др.). Если надо получить порошкообразную ПАК, то ее выделяют осаждением из раствора в большой избыток осадителя. При этом некоторая часть полимера деструктируется. [c.297]

    Другие советские исследователи (главным образом, в Физико-техническом институте АН СССР им. А. Ф. Иоффе) выполнили ряд исследований в этой области. С помощью метода малоуглового рентгеновского рассеяния изучена кинетика образования микротрещин при нагружении и долговечность [1003]. Эта техника также была использована для измерения размеров трещин в растянутом полиамиде [10661. Образец был освобожден от нагрузки и затем вновь нагружался. Каждое новое нагружение дает различную временную зависимость образования радикалов. Это приводит к предположению о том, что разрывы связи необратимы из-за быстрого превращения образовавшихся радикалов во вторичные радикалы, которые затем дезактивируются при взаимодействии с активными центрами цепи, достаточно удаленными, чтобы препятствовать прямой рекомбинации. Изучали альдегидные группы, образующиеся при радикальных реакциях, сопровождающих процесс деструкции. Советские ученые применили концепцию цепных радикальных реакций для объяснения кинетики макромо-лекулярного разрыва в напряженном полимере [1063, 1067]. Для исследования кинетики распада полиолефинов измеряли изменение интенсивности характерных полос поглощения в ИК-спектре [423, 424, 802, 862, 994, 1121]. При различных температурах и напряжениях соотношение между концентрацией образующихся групп и продуктами распада постоянно для данного типа образцов. При этом опять обнаружена экспоненциальная зависимость между напряжением и скоростью образования альдегидных групп. Реакция описывается уравнением первого порядка [1121]. В других публикациях сообщалось о влиянии температуры [1002, 1134, 1218], ориентации [1134, 12181, характера надмолекулярной структуры [423] и степени вытяжки [154, 423] на процесс разрушения. [c.309]


    Интересным примером влияния надмолекулярных структур на кинетику реакций макромолекул может служить твердофазная полициклизация полигидразидов, подробно исследованная в работах Коршака и Берестневой [61—64]. Образование циклов в цепях полигидразидов возможно лишь в случае цмс-конфигурации гидра-зидных фрагментов, однако, более выгодной (с точки зрения внутримолекулярных взаимодействий) является гранс-форма, которая благодаря эффектам упаковки в твердом состоянии становится еще более выгодной. Поэтому для осуществления циклообразования необходим поворот вокруг связи N—К, который возможен лишь при температурах, превышающих температуру стеклования. По мере образования циклов цепь становится более жесткой, температура стеклования возрастает, и тогда, когда она становится соизмеримой с температурой, при которой проводится циклизация, реакция практически заканчивается вследствие застекловывания полимера. Поэтому достижение высокой степени превращения возможно лишь при высоких температурах, когда начинается уже деструкция полимера. Достаточно сложный процесс полициклизации еще больше усложняется в том случае, когда исходный поли-гидразид имеет ориентированную или кристаллическую структуру [63], так как в этом случае конформационные переходы затруднены в еще большей степени это снижает скорость полициклизации и не позволяет довести реакцию до высоких степеней превращения. [c.50]

    За последнее время достигнут значительный прогресс в выяснении химизма процессов термической деструкции полимеров, в основном органических. Можно предположить, что механизм и кинетику термической деструкции большого числа полимерных материалов можно будет предсказывать, по крайней мере качественно, изучая поведение в соответствующих условиях правильно подобранных модельных соединений. Стабильность полиэтилена, например, должна быть аналогична стабильности низкомолекулярного парафинового углеводорода, например гек-сана, основными продуктами термодеструкции которого являются моно-олефины с более короткой цепью. Относительно термодеструкции поливинилхлорида можно было бы заранее предполагать по аналогии с низкомолекулярными хлорированными углеводородами, что при воздействии высокой температуры из него образуется хлористый водород и непредельные соединения. Действительно, указанные выше полимеры деструкти-руются при нагревании именно таким образом, как было предположено, но температуры, при которых происходит этот распад, приблизительно на 200° ниже, чем температуры деструкции соответствуюпщх модельных соединений. Однако некоторые полимерные продукты в( дут себя при термической деструкции совершенно отлично от соответствующих модельных соединений. Так, например, поскольку модельные соединения — этиловые эфиры карбоновых кислот распадаются на этилен и соответствующие кислоты при температурах около 450°, можно было бы ожидать распада по аналогичной схеме и содержащих сложноэфирные группы полимеров таких кислот, как метакриловая, однако образование предполагаемых на основании аналогии продуктов при термической деструкции соответствующих полимеров не имеет места, а при термической деструкции полиэтилметакрилата почти единственным продуктом реакции  [c.18]

    Кинетика процесса. Необходимое условно протекания Д. при деструкции полимеров — образование активных центров преимуществешю свободно-радикального типа (распад макромолекулы по слабым связям, распад связей С — С или каких-либо других связей по закону случая), отщепление молекул мономера от к-рых приводит к распаду полимерпых цепей. Существенную роль в деструкции полимеров Д. может играть только в том случае, если эта реакция может успеншо конкурировать с реакциями передачи цепи (отрыв атома водорода от соседней полимерной молекулы) и отщепления бо1<овых группировок (напр., дегидрохлорирование поливипилхлорида). [c.342]

    Исследование химических процессов. С помощью Д. т. а. изучают процессы получения полимеров и химич. реакции в полимерах, сопровождающиеся тепловыми эффектами (окисление, сшивание, деструкция и др.). По положению и виду пиков на термограмме м. б. определены оптимальные темп-рпые условия процесса образования полимера, прослежены отделында стадии процесса и изучено влияние состава исходных смесей ]та кинетику реакции. С помощью Д. т. а. былп исследованы нек-рые реакции поликонденсации, полимеризации (в том числе радиационной и твердофазной), отверждения и др. [c.366]

    В [379] предпринята попытка на основании представленных ранее равновесий между различными ассоциативными структурами в системе полимер —вода и химических реакций, протекающих в полимерной матрице и приводящих к образованию полярных групп, получить аналитические уравнения, описывающие кинетику сорбции воды на всех стадиях процесса, представленного на рис. 6.23. При этом предполагалось, что вымывание продуктов реакции и ингредиентов полимерной композиции можно не учитывать. При выводе уравнений кинетики набухания были приняты следующие допущения концентрация активных полярных центров в исходном полимере постоянна скорость реакции термоокислительной деструкции невелика по сравнению со скоростью диффузии воды в процессе сорбции мгновенно устанавливается равновесие между Н2О СВ И ВНОВЬ возникнющими по-лярными центрами общее количество сорбированной влаги равно сумме НгОсв, (НгО-ПЦ) и воды, сорбированной на новых полярных центрах. Обобщенное уравнение, характеризующее ки- [c.249]

    В настоящее время основные закоиомериости реакций поликопденсации (глава V) хорошо изучены, хотя экспериментальные работы в этой области в основном посвящены исследованию влияния строения мономеров на образование полимеров и их свойства. Изучению кинетики и механизма реакций поликонденсации уделяется значительно меньше внимания. Процессы деструкции полимеров, полученных в результате реакций поликонденсации, изучены в меньшей степени, чем процессы деполимеризации виниловых полимеров. Часто химик, работающий в области высокополимерных соединений, сталкивается с проблемой нежелательных побочных реакций при синтезе новых полимеров. В связи с этим особое значение приобретает влияние стехиометри-ческих соотношений на ход реакций поликопденсации. Продукты побочных реакций входят в структуру полимера, что отражается на его свойствах, причем побочные реакции, хотя и представленные в незначительной степени, могут оказывать решающее влияние на волокнообразующие свойства полимерного материала. Эти обстоятельства ивюгда затрудняют синтез полимеров заданного строения. [c.15]

    Ферментативный способ получения моносахаридов во многом лишен недостатков, присущих способу, основанному на кислотном гидролизе, поскольку осуществляется в гораздо более мягких условиях по температуре, давлению и кислотности среды Это требует значительно меньших расходов энергии, предотвращает деструкцию сахаров и образование трудно утилизируемых отходов, снижающих биологическую ценность гидролизатов Наконец, следует иметь в виду возможность решения экологических проблем, связанных с необходимостью создания биотехнологических методов утилизации отходов и вторичных продуктов промышленной и сельскохозяйственной переработки растительного сырья В данной работе рассмотрены теоретические аспекты ферментативной деструкции природных полисахаридов — компонентов растительного сырья Интерес к исследованию этой проблемы обусловлен необходимостью разработки научных основ тех направлений физико-химической энзимологии и ферментативной кинетики, которые связаны с функционированием полифермент-ных систем, особенно с ферментативными реакциями со сложной стехиометрией (когда субстрат является полимером, а промежуточные и конечные продукты — олиго- или мономерами) [c.4]

    В противоречие с ранними исследованиями [185], было установлено, что в присутствии воздуха радиационная деструкция ПММА замедляется [195, 199]. Для объяснения этого факта были высказаны различные предположения, связывающие действие кислорода или с образованием перекисных связей между первоначально образующимися при разрыве главных цепей фрагментами макромолекул [199], или с возникновением — независимо от реакций деструкции — перекисных поперечных связей [195], или с захватом молекулами кислорода электронов с образованием молекулярных ионов 00 и снижением вследствие этого скорости деструктивных процессов, протекающих с участием электронов [200]. Hi)HMepHO аналогичный механизм, связанный с захватом электронов, был предложен для объяснения конкурирующей роли кислорода при облучении ПММА, содержащего различные красители [201]. Наличие в облученном на воздухе ПММА групп, распад которых ускоряется в присутствии следов /прет-бутилкатехина, гидрохинона и диме-тиланилина и которые придают полимеру способность инициировать полимеризацию винильных соединений, в известной мере подтверждает гипотезы, приписывающие основную роль в рассматриваемом явлении наличию перекисей [193, 194, 196, 199]. При соприкосновении с воздухом ПММА, предварительно облученного в вакууме, наблюдается наложение асимм(зтричного спектра электронного парамагнитного резонанса, обусловленного перекисным радикалом, на симметричный спектр ЭПР исходного радикала, состоящий из пяти линий (плюс четыре плеча) [202]. Из спектров ЭПР было найдено, что скорость гибели радикалов, непосредственно образовавшихся под пучком, так же как и вторичных перекисных радикалов, подчиняется кинетическим уравнениям второго порядка. Механизм реакции, по которой перекисные радикалы могут образовать перекисные поперечные связи, предположение о существовании которых было высказано, неясен. Недавно была исследована кинетика снижения молекулярного веса облученного ПММА в период последействия и обсуждены некоторые возможные механизмы этого процесса [203]. [c.102]

    Методом масс-спектроскопии показано, что с момента приложения нагрузки из полимерных образцов сразу же выделяются летучие продукты, что связано со вторичными радикальными реакциями, следующими за образованием активных радикалов при разрывах химич. связей. Сопоставление составов летучих продуктов, выделяющихся из полимеров при механич. разрушении и при термич. деструкции, подтвердило предположение о тесной связи между этими процессами и обоснованности обобщенного вывода механич. разрушение полимеров мвжно рассматривать как термич. деструкцию, активированную напряжением. По кинетике выделения летучих продуктов можно судить о кинетике разрывов связей и интегральном эффекте увеличения суммарной поверхности возникающих при разрушении трещин. [c.377]

    Исследование термодеструкции включает изучение химических реакций распада макромолекул и их кинетики. О харар тере реакций распада полимера можно судить по составу летучих продуктов деструкции. Кинетику процесса деструкции принято описывать параметрами уравнения Аррениуса для зависимости скорости образования данного продукта от температуры [c.174]

    Известно [56], что многие полимеры, подвергнутые облучению УФ-светом в вакууме, деструктируют с образованием низкомолекулярных продуктов. Среди них имеются как продукты первичных фотохимических актов, так и вторичных превращений макромолекул. Если проводить опыты, в течение которых происходит накопи ление продуктов, то имеется опасность протекания побочных реакций, искажающих истинную последовательность фотодеструк-ционных процессов. МС позволяет проводить анализ этих процессов по ходу деструкции. В [57] исследован фотолиз полиметилметакрилата (изучен состав продуктов и энергии активации их образования), выявлены кинетические особенности выхода первичных продуктов (формиата) и вторичного метилметакрилата. В работе [40] рассмотрена фотоинициированная деструкция ультратонких пленок полиметилметакрилата, зарегистрирована кинетика деполимеризации макрорадикалов, замороженных в пленке после ее облучения УФ светом (рис. 16). [c.182]

    Анализ кинетики выделения летучих продуктов из ПЭТФ показал, что скорость процесса возрастает в начале реакции и, пройдя через максимум, падает. Возрастание скорости связано, по-видимому, с уменьшением молекулярного веса полимера, так как увеличивается вероятность разрыва эфирных связей, находящихся вблизи концевых групп. Это приводит к образованию терефталевой кислоты, выделяющейся в процессе деструкции. [c.70]

    Кинетические кривые потерь массы (рис. 3.5) свидетельствуют об аутокаталитическом течении реакции [51]. На аутокаталитический характер деструкции ПАН указывается в работе 3. С. Смут-киной [52]. Видимо, процесс деструкции ускоряется при наличии участков сопряжения, что, по мнению авторов [51 ], подтверждается приведенпы.ми ниже данными. Процессы, протекающие при термической обработке ПАН, можно разделить на две стадии до температуры 220°С циклизация происходит без выделения газообразных продуктов при температуре выше 220 °С деструкция сопровождается образованием газообразных продуктов. Исследовалась кинетика деструкции ПАН, подвергнутого предварительной обработке при температуре 220°С в течение различного времени (от 20 до 90 ч). Потери массы полимера не превышали 1%. Кинетические кривые процесса представлены па рис. 3.6, из которого видно, что в этом случае отсутствует индукционный период и потери [c.151]

    Эти изменения являются результатом действия кислорода, что можно видеть на рис. 163, где показано изменение прочности и растворимости в зависимости от количества присоеди-ненного кислорода. Натрийбутадиеновый синтетический каучук окис.пяется при повышенных температурах, пре-терпеваясложные химические превращения, которые развиваются в двух противоположных направлениях окисли-тельпо деструкции, связанной с разрывом цепей главных валентностей (окислительный распад), и образования разветвленных структур (полимеризация). Конечным результатом этих реакций являются глубокие, необратимые изменения каучуков, проявляющиеся внешне в потере ими ценных технических свойств (э.ластичность, растворимость и т. д.). Кузьминский, Дегтева и Лаптева исследовали кинетику и промежуточные продукты окисления натрийбутадиенового синтетического каучука и нашли, что при окислении полимера в интервале 80—100° образуются твердые, жидкие и газообразные продукты реакции. Соотношение между ними изменяется в зависимости от стсиенн окисления и температуры. [c.393]


Смотреть страницы где упоминается термин Кинетика реакций образования и деструкции полимеров: [c.380]    [c.483]    [c.76]   
Смотреть главы в:

Курс химической кинетики -> Кинетика реакций образования и деструкции полимеров

Курс химической кинетики -> Кинетика реакций образования и деструкции полимеров




ПОИСК





Смотрите так же термины и статьи:

Деструкция полимеров

Кинетика образования ила

Реакции полимеров

Реакции полимеров деструкции



© 2025 chem21.info Реклама на сайте