Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Регенерация хлора из соляной кислоты электролизом

    В ряде химических производств образуются в качестве побочных продуктов значительные количества соляной кислоты и хлористого водорода (заместительное хлорирование органических соединений, производство -металлического магния, фосфорной кислоты и фосфатов и т. д.). Эти так называемые абгазные соляная кислота и хлористый водород содержат различные примеси, что затрудняет использование соляной кислоты в качестве товарного продукта. Одним из путей утилизации абгазной кислоты является ее электролиз с целью регенерации хлора. В промышленности нашел применение прямой электролиз соляной кислоты, в результате которого образуются хлор и водород. [c.177]


    Переработка хлористого водорода в хлор разнообразными химическими методами или электролизом соляной кислоты частично используется в ряде стран, но широкого применения не находит из-за экономических соображений. Химические методы регенерации хлора и электролиз соляной кислоты применяются лишь там, где по местным условиям не могут быть применены другие, более рациональные методы переработки абгазной соляной кислоты. [c.157]

    Для электролиза соляной кислоты разработаны конструкции биполярных электролизеров фильтр-прессного типа [42] на нагрузку до 10—12 кА с числом ячеек до 40 [43]. Установки для электролиза г.оляной кислоты оборудованы в ряде стран [44]. Для снижения напряжения при электролизе предложено добавлять к электролиту соли палладия [45], а также соли меди и железа с деполяризацией катода путем подачи кислорода [46]. Разрабатывается также электролиз НС1 в расплаве смеси хлоридов щелочных и щелочноземельных металлов [47, 48] с целью снижения напряжения на ячейке примерно до 1,45 В против 1,8—2,0 В, необходимых при электролизе водных растворов. Электролиз соляной кислоты для регенерации хлора и попутного хлористого водорода находит применение в ФРГ, США, Японии и других странах. Однако даже в такой стране как ФРГ, где электролиз соляной кислоты нашел наибольшее применение, доля его в общем производстве хлора составляет около 4% [4]. [c.20]

    Регенерация хлора из соляной. кислоты электролизом [c.132]

    В связи с тем, что спрос на хлор и хлорпродукты растет быстрее, чем на каустическую соду, в последнее время вновь возник интерес к разработке и реализации в промышленности способов получения хлора, не связанных с одновременным получением каустической соды. Разрабатываются различные химические методы получения хлора окислением хлористого водорода, регенерацией хлора из хлористого аммония, электролизом соляной кислоты. [c.19]

    Получение винилхлорида из этилена и хлора с регенерацией хлористого водорода. При получении винилхлорида комбинированным методом хлористый водород, образующийся при термическом разложении дихлорэтана, используется для гидрохлорирования ацетилена. Однако применение этого метода выгодно только при наличии недорогого и доступного ацетилена. В противном случае возникает необходимость утилизации хлористого водорода. В связи с этим в последние годы разработаны два способа получения из хлористого водорода элементарного хлора Один из способов основан на электролизе концентрированной соляной кислоты. При этом одновременно с хлором образуется эквивалентное количество водорода. При электролизе только часть хлористого водорода превращается в хлор и водород. Образующаяся разбавленная соляная кислота концентрируется путем пропускания через нее газообразного хлористого водорода —продукта пиролиза дихлорэтана. По второму способу хлористый водород окисляют кислородом воздуха в присутствии катализатора (реакция Дикона)  [c.22]


    Регенерация хлора из хлористого водорода электрохимическим методом реализована в промышленных масштабах в процессах электролиза соляной кислоты. Для этой цели разработаны электролизеры Уде, Де-Нора и др.[ 2 . [c.131]

    Одним из рациональных способов использования отбросного хлористого водорода, образующегося при хлорировании органических соединений, является регенерация из него хлора путем электролиза водных растворов соляной кислоты. Получаемый при этом хлор снова используется для хлорирования и других синтезов. [c.350]

    На рис. 116 приведена 2 схема установки для получения 32 г хлора в сутки методом электролиза растворов хлорида меди. Электролиз предусматривалось проводить в серии, состоящей из 310 электролизеров на нагрузку 4 ка, регенерацию отработанного электролита—в каскаде аппаратов для окисления одновалентной меди в двухвалентную кислородом воздуха в присутствии соляной кислоты. [c.290]

    При хлорировании органических веществ, в частности, насыщенных углеводородов, около 50% израсходованного хлора превращается в хлористый водород, выделяемый в виде соляной кислоты, не имеющей рыночной ценности. Последнюю, во избежание сброса в канализацию, направляют на регенерацию для получения хлора путем электролиза. Таким образом, достигается циркуляция хлора в замкнутом цикле и уменьшается выход едкого натра в два раза, причем этот способ конкурирует с электролизом поваренной соли [55, 72]. [c.35]

    В настоящем обзоре рассматриваются некоторые наиболее интересные и важные вопросы, связанные с утилизацией хлорида водорода и возвращением его в сферу производства как в виде безводного хлорида водорода или соляной кислоты (концентрирование разбавленных растворов соляной кислоты, регенерация соляной кислоты из отработанных травильных растворов), так и в виде хлора (процесс Кел-хлор, электролиз соляной кислоты).  [c.2]

    Процессы разряда ионов металла протекают на катоде практически без перенапряжения в отличие от разряда водорода. Поэтому косвенные методы электролиза соляной кислоты могут быть проведены с меньшим напряжением на ячейке электролизера и более низким удельным расходом электроэнергии. Одновременно упрощается конструкция электролизера, так как при электролизе образуется только один газообразный продукт — хлор и нет необходимости в устройствах для разделения газовых электродных продуктов. Однако при этом необходимо осуществлять дополнительные стадии растворения выделяющихся на катоде металлов либо перевода ионов металла из низшей валентности в высшую для регенерации исходного электролита. Это усложняет схему производства, требуется дополнительная аппаратура и возрастают затраты. [c.254]

    На основе сказанного можно сделать вывод, что электролиз растворов Hg l2, по-видимому, позволяет регенерировать хлор из соляной кислоты с меньшими удельными затратами электроэнергии, нежели при прямом электролизе соляной кислоты. Однако необходимость применения дефицитной ртути и возможные потери ртути в процессе производства и особенно на стадии регенерации раствора являются серьезными недостатками этого метода. [c.303]

    В некоторых процессах продукты электролиза удаляют про-сасыванием их вместе с частью электролита через пористый электрод, чтобы предотвратить попадание продуктов электролиза к электроду противоположного знрка. Таким образом, можно в электролизере без диафрагмы обеспечить хорошее разделение анодных и катодных продуктяв с хорошим выходом по току целевых продуктов. В качестве примера такого использования пористых электродов можно привести электролиз хлоридов меди для регенерации хлора из соляной кислоты [44]. Пористые электроды могут быть использованы и для отделения газов от жидкости в установках электролиза воды для регенерации воздуха в закрытых герметичных объектах в условиях невесомости. [c.41]

    Исследуется использование твердых полиэлектролитов для регенерации [22] хлора из побочно образующейся при электролизе Na l соляной кислоты для получения соды способом [ 16], при котором ожидается уменьшение напряжения на 0,5 - 0,8 В по сравнению с современным методом электролиза с помощью ионообменных мембран, а также в органическом синтезе, например при восстановлении магеиновой кислоты в янтарную и бензохинона в гидрохинон [23]. [c.353]

    Окисление С1 с целью получения СЬ можно осуществлять и и электролизом Соляной кислоты или получаемых из нее хлоридов металлов. В последнем случае регенерацию хлора можно комбинировать с извлечением из руд чистых металлов, в частности порошкообразных. Промышленный электролиз соляной кислоты был- освоен в небольших масштабах в США еще в 30-х годах. В Германии во время второй мировой войны работала опытная установка по электролизу соляной кислоты. В США получены удовлетворительные результаты на полупромышленной установке по электролизу СиСЬ, оборудованной ванной мощностью 4000 а. Электролиз водного раствора СиСЬ ведут при 80°, при плотности тока 11 ajdMP и напряжении на ванне 1,8 в, с графитовыми анодом и катодом  [c.411]


    Для получения хлора из соляной кислоты используют процесс, состоящий из электролиза раствора СиСЬ и последующей регенерации СиСЬ обработкой смеси u l и соляной кислоты воздухом или кислородом  [c.55]

    Изложенные здесь данные позволяют сделать вывод, что при электролизе растворо в Hg b регенерация хлора из соляной кислоты, по-видимому, проводится с меньшими удельными затратами электроэнергии, чем в случае прямого электролиза соляной кислоты. Однако необходимость применения дефицитной ртути и возможные ее потери в производственном процессе, особенно на стадии регенерации раствора, являются серьезными недостатками этого метода. [c.296]

    Насыщенный рассол самотеком сливается из верхней части сатуратора в бак 3. Из него насосом 4 через фильтр 5 и теплообменник 18 около 70—85% рассола вновь направляется на электролиз. Меньшая часть рассола (15—30%) передается на обесхлоривание и очистку от примесей. Эта часть рассола поступает в смеситель 6, куда одновременно из напорного бака 7 добавляется соляная кислота. Из смесителя рассол подается в колонну 8, где хлор отдувается воздухом, вводимым в нижнюю часть колонны. Далее рассол, содержащий 10—20 мг л хлора, поступает в уравнительную колонну 9. Здесь он обрабатывается непрерывно подаваемым из напорных баков 7 растворами щелочи и сернистого натрия и сливается в приемный бак 10. Далее рассол отделяется в насадочном фильтре 5 от выпавшего осадка сернистой ртути (шлама), передаваемого на регенерацию ртути. Отфильтрованный рассол поступает на очистку от кальция, магния и сульфатов в верхнюю часть центральной трубы отстойника 11. Сюда же подаются реактивы—растворы соды и хлористого бария, щелочь введена в рассол ранее (в уравнительную колонну). Образующиеся осадки СаСОз, Mg (ОН)2 и BaSO уплотняются в нижней части отстойника. Осветленный и очищенный рассол перетекает из верхней части отстойника в бак 16, отсюда перекачивается через фильтр 5 в смеситель 15 для непрерывного подкисления соляной кислотой (из напорных баков 7) и сливается в бак 17. Из этого бака очищенный рассол непрерывно откачивается в общую линию питания электролизеров рассолом, где смешивается с хлорсодержащим рассолом, не подвергавшимся очистке. [c.256]


Смотреть страницы где упоминается термин Регенерация хлора из соляной кислоты электролизом: [c.75]    [c.4]    [c.136]    [c.216]    [c.27]    [c.160]   
Смотреть главы в:

Электрохимическая технология неорганических веществ и химические источники тока -> Регенерация хлора из соляной кислоты электролизом




ПОИСК





Смотрите так же термины и статьи:

Кислота регенерация

Кислота соляная

Кислоты хлором

Регенерация хлора из соляной кислоты

Регенерация электролизом

Соляная кислота кислоты



© 2024 chem21.info Реклама на сайте