Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Резисты свойства

    Гидродинамические свойства полимерных резистов также являются функцией взаимодействия полимер — растворитель. Подходящей характеристикой является так называемая характеристическая вязкость (или предельное число вязкости) [т)], которая определяется экстраполяцией отношения приведенной вязкости к концентрации полимера в растворе к нулевой концентрации. Величина [т)] является мерой гидродинамического объема полимерного клубка (см /г), а ее взаимосвязь с ММ определяется уравнением Марка — Хувинка  [c.19]


    В большинстве полимерных резистов используются аморфные полимеры, физико-химические свойства которых определяются конформацией полимерной цепи или ее сегментов. Молекулярное движение полимерной цепи или ее сегментов зависит от температуры. При повышенных температурах возрастает число степеней свободы цепей, что может вызвать течение, и полимер ведет себя как вязкая жидкость. При понижении температуры движение сегментов полимерной цепи уменьшается, а при температуре стеклования Тс полностью прекращается. Ниже Гс полимерный материал приобретает характеристики стекла. Подобное явление наблюдается и у неорганических полимеров, например у силикатного стекла. Тс определяется подвижностью и гибкостью полимерной цепи и до некоторого предельного значения ММ полимера является характеристикой материала. Так как подвижность сегментов полимерной цепи связана со сменой конформации и зависит от времени, то конформация полимерной цепи никогда не является равновесной для достижения равновесия необходимо бесконечно большое время. [c.21]

    К принципиальным недостаткам контактного метода относятся образование дефектов изображения из-за контактных нагрузок на фоторезистную пленку и несовмещаемость изображений различных слоев, также связанная с контактными деформациями искривленных поверхностей. Оптимизация условий контактного экспонирования и приводит к тому, что предельные возможности метода не реализуются на практике. Попытки снизить контактное усилие с целью устранения дефектообразований в резисте приводит к падению разрешающей способности метода и неконтролируемому уходу размеров элементов из-за образования зазоров, а также расходимости экспонирующего пучка лучей и дифракции. Расходимость (апертура) пучка лучей даже при наличии конденсорных коллимирующих систем в современных установках экспонирования составляет 3—7°, что и при небольших зазорах приводит к образованию полутени в изображении, отклонениям линейных размеров элементов и ухудшению качества края элементов. Дифракция света на краях элементов при наличии микрозазоров переменной величины по площади объекта приводит к образованию интерференционной структуры в изображении и ряду других нежелательных эффектов, например так называемому двойному краю — оконтуриванию изображения элементов вследствие осцилляции освещенности у края элементов, что связано с контрастностью и пороговыми свойствами светочувствительного материала. Могут искажаться углы элементов и даже их форма, особенно существенными эти искажения могут быть при использовании когерентного света. [c.27]


    Еще одним явлением, ограничивающим возможности фотолитографии, является образование стоячей волны в толще слоя фоторезиста — приемника излучения, который стоит последним в совокупной цепи формирования микроизображений свойства резиста должны отвечать особенностям результирующей структуры скрытого изображения. На рис. I. 10 представлен ряд эффектов, которые ограничивают возможности фотолитографии а —апертура светового пучка б — многократное отражение, в —дифракция, г —рассеяние в толще светочувствительного материала, д — стоячие волны. Стоячие волны возникают в толще фоторезиста в результате взаимодействия падающей и отраженной от подложки световых волн. Можно показать, что интенсивность стоячей волны /с определяется выражением  [c.31]

    Условием адекватности модели является однородность нанесения слоя резиста на подложку и изотропность его свойств. [c.53]

    Введение частично фторированного поверхностно-активного полимера в композицию делает гораздо более ровным слой резиста на подложке, улучшает его светочувствительность и повышает механические свойства резистного рельефа [пат. ФРГ 2914558]. [c.81]

    Наряду с обычными свойствами резист для глубокого УФ-света должен не только хорошо поглощать свет в области коротковолнового УФ-света (210—270 нм), но и не иметь поглощения в более длинноволновой области. Последнее избавляет от необходимости решать сложную задачу фильтрации актиничного длинноволнового света в спектре источника экспонирования. Одновременно для экспонирования в этой области разрабатываются специальные методы и источники света [4], применяются эксимерные лазеры [5]. Поскольку кванты света в коротковолновом УФ-свете несут примерно в 2 раза больше энергии, чем на грани видимой области спектра, то для сокращения энергозатрат и уменьшения нагревания слоев при экспонировании важно сильно повысить светочувствительность композиций по сравнению с обычными резистами. [c.177]

    Разрешение, достигаемое на данной стадии литографического процесса, определяется параметрами экспонирующего устройства, свойствами резистов и факторами, влияющими на скорость обработки слоя резиста и образование нужного рельефа. Когда указывается разрешающая способность резиста, необходимо всегда приводить условия, в которых был образован рельеф, прежде всего ускоряющее напряжение, толщину слоя резиста, условия обработки резиста, а в некоторых случаях и последующих слоев [82], и способы измерения ширины линий. Без этих основных данных невозможно сравнивать отдельные материалы и сопоставлять результаты литографических процессов. Ниже перечислены факторы, оказывающие влияние на разрешающую способность электронной (I), рентгеновской (П) и ионной (И1) литографии. [c.241]

    Положительным свойством полисилоксанов является возможность их превращения в конечном итоге в 5102, но по сравнению с некоторыми другими полимерными резистами они имеют целый ряд серьезных недостатков. Прежде всего это плохая термостабильность при 70°С протекает самопроизвольное структурирование полисилоксанов, к такому же результату приводит и воздействие влаги воздуха. Однако главным недостатком является малая стой- [c.243]

    Чувствительность сополимеру глицидилметакрилата с этилакрилатом (70 30 Mw = 160000 Mw/Mn = 2,3), обозначаемого СОР, Dr = 3,2-10- Кл/см , 7= 1,0 [95]. По данным ДТА сополимер при нагревании структурируется, поэтому температура предварительной термообработки рекомендована в интервале 60—75°С, продолжительность термообработки 3—15 мин. При проявлении в метилэтилкетоне наблюдали деструкцию возникших структур из-за набухания сшитого полимера. Эта деструкция была подавлена при проявлении в смеси метилэтилкетона с этанолом (5 2). Температура доотверждения рекомендована в пределах 100—150°С. Испытания показали очень хорошие литографические свойства СОР как при изготовлении хромовых масок, так и в некоторых случаях при прямом экспонировании на кремниевых подложках [96]. Минимальный размер элементов в технологических процессах составляет 1 мкм. Существенным недостатком при использовании этого сополимера для прямого экспонирования на кремниевых подложках является его низкая температура стеклования (Тс 10°С), что на стадиях обработки при повышенной температуре ведет к деструкции образованной структуры. СОР стал первым промышленно производимым электронным резистом, предназначенным для производства хромовых масок. Подобные резисты запатентованы в ФРГ [пат. ФРГ 2543553, 2849996, 2450381]. [c.246]

    Сама маска в настоящее время изготавливается методом химического вытравливания нужного рисунка на тонкой пленке металлического хрома, нанесенной на стеклянную подложку. Рисунок впечатывается в резистную пленку с помощью управляемого компьютером электронного луча. Способы проявления органического резистного материала, предназначенного для переноса рисунка на объект, основываются на результатах сравнительно недавних изысканий. Используется много новых типов полимеров и химических реакций, без которых усложнение интегральных схем было бы невозможно. Фактически ни одного из этих полимеров в 1970 г, еще не существовало. Примерами новых электроннолучевых резистов могут служить продукты сополимеризации различных алкенов с диоксидом серы. Открытие способов синтеза и фоточувствительных свойств таких материалов относится к совсем недавнему времени. [c.136]


    В набор свойств, которыми должны обладать высокомолекуляр -ные резистивные материалы, используемые в литографии, наряду с пленкообразующей способностью входят 1) высокая чувствительность, 2) высокая разрешающая способность, 3) устойчивость к травлению, 4) высокая прочность адгезии к материалу подложки. Кроме того, резисты должны быть простыми в обращении и обладать большим временем жизни (большим временем до застывания). [c.239]

    При проведении оценок первых двух свойств используют следующий способ измерения, Пленку резиста облучают потоком света или близкими к нему по энергии лучами Как ранее указывалось, резист при этом расщепляется (сшивается) и переходит в низкомолекулярное (высокомолекулярное) соедшение. Затем, используя изменение молекулярных масс облученных и необлученных участков, в частности различие растворимостей, резист проявляют. На рис.., 3,94 показана зависимость скорости расщепления (сшивания) от дозы облучения, которую рассчитывают по толщине остаточной пленки. Слева изображена характеристика негативного резиста, справа - позитивного. Чувствительность материала S измеряют в Дж/см для ультрафиолетовых и рентгеновских лучей и в Кл/см для электронного луча. Подъем кривой у = tg 6 характеризуют величиной у = (Ig D/Di ) S которая является мерой разрешающей способности резиста Очевидно, что при малых значениях чувствительности желательно,что >1 значение у [c.239]

Таблица 3.19. Свойства фторсодержащих резистов Таблица 3.19. <a href="/info/616920">Свойства фторсодержащих</a> резистов
    Вообще же разнообразные светочувствительные полимерные композиции для фотолитографии можно грубо разделить на две группы 1) рельеф создается за счет защищенных шаблоном участков полимера действие света изменяет физико-химические свойства слоя, в основном растворимость, вследствие образования новых функциональных групп таким образом, рельеф повторяет рисунок шаблона, поэтому эти резисты названы позитивными  [c.93]

    Среди большого разнообразия материалов, используемых современной радиоэлектроникой и полиграфией, фото-, электроне- и рентгенорезисты занимают особое положение. Они предназначены для проведения литографии — создания под действием излучения на поверхности подложки в виде рельефного изображения топологии будущей радиоэлектронной схемы или полиграфической печатной формы. С этих технологических операций и начинается длинная цепь этапов производства радиоэлектронных, в том числе и микроминиатюрных, приборов. Если учесть, что размеры элементов современных радиоэлектронных схем составляют менее 1 мкм, то очевиден высокий уровень требований к совокупности свойств таких материалов. Без резистов была бы невозможна современная микроэлектроника. [c.6]

    Для того чтобы провести стравливание по определенному рисунку, необходимо защищать места, которые не следует подвергать травлению, слоем материала, устойчивого при этой химической операции. Такие материалы называют резистами (англ. resist— устойчивый). Если резист является светочувствительным и это свойство удается использовать для создания слоя резиста с нужным рисунком, то такой резист называют фоторезистом. [c.8]

    Литографические свойства резиста определяются рядом факторов (гл. I). Полимеры для негативных фоторезистов обычно линейны, их ММ 10 —10 . Из их растворов в летучих растворителях формируют на подложке пленки микронной и субмикроннон толщины. Необходимо, чтобы светочувствительный компонент поглощал в области эмиссии используемого источпика света, а изменение физико-химических свойств пленки, требуемое для создания различий в свойствах экспонируемых и пеэкспонируемых участков в расчете на 1 квант света, было как можно большим, так как оба фактора определяют время экспонирования. Полимерный рельеф должен иметь хорошую адгезию к подложке, чтобы исключить подтравливание краев при последующих операциях травления подложки (растворами сильных кислот или щелочей), а также уменьшить пористость слоя. [c.13]

    Создание и исследование резистов продолжается до сих пор с целью разработки материалов с оптимальными свойствами. Получены резисты для электроно- и рентгенолитографии, разрабатываются материалы для ионной литографии (гл. VH). Решающую роль в росте производительности литографии может сыграть повышение чувствительности резистов, поэтому с целью достижения большей светочувствительности в новых разрабатываемых позитивных резистах используется термическое усиление первичных процессов в результате каталитического действия продуктов фотолиза светочувствительного компонента на гидролиз пленкообразующего полимера. Разрабатываются новые типы резистов стойкие к ИХТ, для создания чувствительных к коротковолновому УФ-свету планаризационных слоев, для создания слоев и проявления без участия растворителей (сухие резисты) (гл. VI). Очевидно, для развития микроэлектроники необходимо создавать новые резисты, выдвигая и используя перспективные идеи. Особенно важно находить эффективные фотореакции и на этой основе получать рези . тные композиции. Так, относительно недавно была обнаружена и изучена высокая светочувствительность ониевых солей органических соединений элементов пятой и шестой групп использование полученных результатов в литографии позволило ввести в обиход в качестве полимерного компонента эпоксидные смолы (гл. III). Важным материалом для литографии оказались также полиолефинсульфоны. [c.14]

    Резистиые слои полифункциональны как мы уже видели, они не только защищают поверхности при травлении, но служат также печатающими элементами в печатных формах, избирательное поглощение излучения резистными слоями испо.тьзуется в масках и фильтрах. В настоящее время установлено, что пленку резиста можно применять в качестве электроизоляционного слоя, что требует повыщения ее термостойкости. Недавно были разработаны фоторезисты-диффузанты (гл. VI), которые совмещают в одном материале стойкость к травлению и способность к диффузии примесей в подложку. Несомненно, в дальнейшем будут выявляться и широко использоваться другие свойства высокоразрешенных рельефных полимерных слоев. [c.14]

    Все реагенты, используемые для создания резистных композиций и при работе с подложками и резистными слоями, должны иметь квалификацию не ниже ч.д.а. Растворы резистных композиций с целью повышения их стабильности и улучшения качества пленок очищают от примесей центрифугированием, а также фильтруют через специальные фторопластовые фильтры с размером пор 0,2 мкм. Растворы резистов постепенно разлагаются при комнатной температуре в основном за счет светочувствительных компонентов, например, азиды, хинондиазиды выделяют азот. Разложение этих компонентов понижает светочувствительность резистов и изменяет их свойства. При хранении из резистов может выкристаллизовываться светочувствительный компонент или продукты его превращений. Повышенное содержание воды в пленках хинон-диазидных резистов может ухудшить адгезию слоя, явиться причиной ряда других технологических осложнений [1—3]. Так как слои позитивных резистов при обработках не теряют светочувствительности, возможна их реэкспозиция. Необходимо во избежание фоторазложения резиста и изменения его характеристик проводить технологические операции при подходящем освещении. [c.15]

    Свойства растворов высокомолекулярных веществ, используемых в качестве резистов, зависят от природы растворителя и полимера, причем последний определяет и возможность плеикообразования. Склонные к кристаллизации полимеры в отличие от аморфных всегда образуют структурно-неоднородные пленки. Размеры макромолекул в растворе и твердой аморфной фазе определяются размерами полимерного клубка, который характеризуется среднеквадратичным расстоянием между концами макромолекулы или инерционным радиусом клубка. В термодинамически эффективных ( хороших ) растворителях клубок имеет больший размер, так как взаимодействие растворитель — клубок, характеризуемое параметром взаимодействия ведет к разбуханию клубка. В плохих растворителях % меньше) объем клубка уменьшается и приближается к объему клубка в так называемых 6-растворителях или в твердой аморфной фазе. При дальнейшем снижении параметра взаимодействия х полимер становится нерастворимым (см. разд. I. 1.5). Следовательно, выбор растворителя так же как и [c.18]

    При изучении взаимной зависимости характеристик электрон ного луча и свойств резиста оказалось, что воспроизводимость профиля зависит от ошибок положения луча, его расфокусировки наклона луча, уровня шумов [52]. С целью увеличения произво дительности сканирующей ЭЛУ иссле,дованы возможности много лучевого сканирования в варианте с параллельной фокусировкой но с индивидуальным бланкированием лучей [39]. Некоторые практические аспекты электронной литографии отражены в [53] [c.39]

    Фирма ЗМ (США) вводит в композицию позитивного резиста с целью улучшения механических свойств слоя смесь НС и акрилатного полимера (например, сополимера 35 % стирола, 59 % этилакрилата и 6 % метакриловой кислоты), модифицированных полиизоцианатами в присутствии триэтилендиамина [пат. Великобритании 1474073]. С этой же целью составляют композицию фоторезиста из светочувствительного хинондиазида, НС, резола и добавок — эпоксифенольного лака и бутилированного стиромаля после обычных операций и обработок получают высокотираже-устойчивую печатную форму [а. с. СССР 889486]. [c.81]

    Слой пленочного резиста для микроэлектроники и полиграфии [пат. ФРГ 2935904 пат. США 4247616 франц. пат. 2435741] создается смесью полимера, состоящего на 50 % из полиуретана, термостабильной НС с ММ 500—1000 и полиизоцианата с углеродной цепью до 40 С н на 50 % из эпоксидной смолы с эпоксидным эквивалентом менее 400, которая дополнительно термоотвержда-ется, нафтохииондиазида, красителя, фталевого ангидрида и диаминодифенил-сульфона (последние — отвердители эпоксида). Свойства композиции удается улучшить, если часть НС получать из фенолов с алкильными группами [европ. пат. 0087262]. Смесь из растворителя наносят на тонкую полиэфирную пленку, предварительно покрытую метилцеллюлозой. Получают хорошую гибкую пленку. Ее можно нанести на медь с помощью нагретого до 100 °С валка. Полиэфирную пленку снимают перед экспонированием. [c.85]

    После термообработки возникают и другие трудности, в частности при удалении слоя резиста с подложки кроме того, из-за пластичности полимера при температуре выше Гс падает разрешение и контрастность высокоразрешенного рельефа, вплоть до слняния отдельных линий, что осложняет использование термолиза в производстве интегральных схем и вообще в микроэлектронике. Очевидно, варьируя температуру и продолжительность термолиза, можно достичь компромисса между улучшением механических, физических свойств и ухудшением разрешения. Так, согласно пат. США 4259430, в слой резиста вносят примерно 6 % в расчете на сухой остаток термически активируемого радикального инициатора (например, грет-бутилгидропероксида, бензоилпероксида) и отверждают слой после проявления при 150—190 °С в течение 30 мин. При этом рельеф не деформируется, выдерживает травление подложки кипящей фосфорной кислотой, давая мало дефектов резист удаляется горячей Н2804, [c.86]

    Их применяют для проявления резистов в производстве интегральных схем, когда важно отсутствие ионов металлов в растворах системы обработки. Проявление раствором, например, (НОСН2СН2)з(СНз)Й" ОН отличает возможность варьирования продолжительности проявления, уменьшения времени экспонирования и использования неводных растворителей — пиридина, сульфолана, Ы-ме-тилпирролидона, ДМСО, ДМФА, ДМАА, улучшения контрастности, а также малая скорость истощения проявителя и минимальные потери толщины слоя [пат. США 3871930] однако растворы проявителя недостаточно устойчивы, разлагаются, темнеют, что ухудшает их свойства. Для стабилизации этих растворов в них вводят 0,08—0,12 моль (N1 4)28205 или сульфита на 1 моль основания. Сульфит присоединяется к альдегиду — продукту разложения тетраалкиламмония, чем и предотвращает его полимеризацию, в результате раствор не темнеет, разложение замедляется [пат. США 4294911]. [c.93]

    На основе эфиров о-нитробензилового спирта и его производных могут быть получены светочувствительные пленкообразующие полимеры и сополимеры с различными свойствами. Примеры таких систем, включающий полициклические, гетероароматические и замещенные о-нитробензильные соединения и сополимеры их эфи ров с ненасыщенными кислотами, приведены в пат. США 3849137 и пат. ФРГ 2150691. На подобной основе разработан также и пленочный фоторезист [пат. ФРГ 2922746]. Его получают, например, из сополимера 40 ч. о-нитробензилакрилата, 54 ч. метилметакри-лата, 1 ч. акриловой кислоты и 1 ч. азодиизобутиронитрила, добавляя пластификатор и черный краситель. Экспонированная часть несколько выцветает, что обеспечивает хороший цветовой контраст. Проявляют водно-органическим раствором триэтаноламина. Резист хорошо выдерживает травление кислотой, растворами РеС1з, СиСЬ и (МН4)23208, а также в щелочах он может быть использован и как гальванорезист. [c.101]

    Фотолиз арилдиазониев в различных полимерах приводит к изменению их свойств, в большинстве случаев — к понижению растворимости. Это связывают со сшиванием полимеров. Полагают, что образовавшиеся из арилдиазониев радикалы могут инициировать цепную полимеризацию [см. например, 5 пат. ГДР 206436]. Такое дубление полимеров продуктами фотолиза солей диазония давно нашло применение при создании копировальных материалов. Для этого на какой-либо подложке создают из раствора тонкий слой соли арилдиазония и полимера после фотолиза через шаблон экспонированные участки слоя чаш,е всего теряют растворимость, что позволяет при жидкостном проявлении получать рельеф, отвечаю-Ш.ИЙ негативу шаблона. В случае олеофильного и механически прочного рельефа гидрофильных незаш,ищенных слоем участков подложки получают печатную форму для плоской (офсетной) печати если рельеф стоек к травлению, то он может служить резистом для изготовления форм высокой и глубокой печати на би- и триметал-ле, а также в радиоэлектронике при создании интегральных схем. Слой на подходящей подложке готовят вне производства, и готовые к экспонированию пластины ( предварительно очувствленные пластины ) могут храниться до момента применения от нескольких месяцев до нескольких лет. Вследствие доступности, дешевизны, относительной простоты и надежности в работе предварительно очувствленные пластины на солях диазония, особенно на полимерных ( диазосмолах ), нашли широкое применение для создания форм плоской, глубокой и высокой печати. [c.106]

    Обычно кривые чувствительности хорошо воспроизводятся. Как будет показано ниже, в некоторых случаях (прежде всего у позитивных резистов) они не дают полного совпадения с приводимыми в литературе значениями литографической чувствительности, которые выражаются, как правило, в единицах дозы излучения на единицу площади. Параметры чувствительности в этом случае лучше рассматривать совместно с критериями контрастности. Чувствительность и контрастность зависят от свойств и структуры компонентов полимерных резистов химического состава, ММ, ММР, Тс, плотности, средней атомной массы (только для рент-генорезистов) а также от параметров технологического процесса состава проявителя, условий проявления, предварительного и заключительного отверждения. [c.238]

    Как видно из данных табл. VII. 3, при близком соотношении компонентов в сополимере, наибольшая чувствительность наблюдается у сополимера с бромпроизводным стирола, однако его контрастность так же, как и стойкость к плазменному травлению, наименьшая. Наиболее подробно изучены литографические свойства сополимера глицидилметакрилата с 3-хлорстиролом. Для улучшения адгезии необходима предварительная термообработка пленки, при которой, однако, всегда происходит структурированпе, а структурированный резист нужно после проявления (рис. VII. 21, а) jp удалять из необлученных [c.250]

    Галогенароматические полимеры, таким образом, в настоящее время представляют собой негативные резисты с оптимальным комплексом свойств чувствительностью, разрешающей способностью и стойкостью при плазменном травлении. С ростом содержания атомов галогена повышается, но до определенного предела, способность к сшиванию Этот предел зависит от природы атома галогена и наступает тем быстрее с ростом числа атомов галогена, [c.252]

    Возможность улучшения свойств при использовании в качестве резиста ПММА или сополимеров метилметакрилата с метакриловой кислотой, метакриламидом или Н-алкилметакриламидом состоит в нитровании около 10 % метильных групп [пат. ФРГ 2642269]. Чувствительность таких сополимеров достигает 10-5 Кл/см2. [c.257]

    Полихлорметилстирол с Мда = 3-10 применяемый в качестве негативного резиста, позволяет достичь высокого разрещения из-за малого рассеяния электронов, а также равномерного распределения поглощенной энергии по глубине. Его термостойкость и стойкость к сухому травлению на уровне соответствующих характеристик позитивных новолачных фоторезистов AZ. Постэкспозиционное фотоотверждение резко уменьшает уход размеров рельефа вплоть до 300°С. Свойства резиста сопоставимы со свойствами хлорметилированного полистирола [136]. [c.266]

    При экспонировании резиста ионами не наблюдается эффекта близости, так как ионы значительно тяжелее и путь их пробега в резисте и подложке зависит от типа ионов и их энергии. Легкие ионы, такие, как Н+ и Не+, могут иметь пробег около 1 мкм, однако у более тяжелых ионов, таких, как Аг+ и Ga +, пробег составляет сотни нанометров. Так как при действии ионов могут нарушиться полупроводниковые свойства подложки, использование МСР может обеспечить высокое качество экспонирования тонкого слоя чувствительного резиста, причем слой планаризационного резиста служит буфером для предотвращения действия ионов на подложку. Кроме того, можно образовать нужный изоляционный барьер, используя толстый слой чувствительного резиста и прямо вводя в него ионы при экспонировании [8]. Если соединения, образованные этими ионами (например, Ga +), устойчивы при ИХТ, непосредственно образуется собственно ПМ и можно достичь эффективности МСР при использовании однослойного резиста (рис. VIII.2). [c.271]

    Еще один способ улучшения свойств усилителей основан на применении низкочастотной емкостной коррекции. В этом случае необходимо обеспечить резистив-но-емкостной характер нагрузки каскада. Достаточно включить некоторую комбинацию резисторов и конденсаторов либо в цепь коллектора, либо в базовую цепь следующего каскада. При такой коррекции улучшается форма вершины импульсов. [c.140]

    Наряду с прозрачностью особенно важным свойством стекла является его способность постепенно размягчаться при нагревании до температуры каления задолго до того, как оно перейдет в яшдкое состояние. На этом основано формование стекла при нагревании (стеклодувное дело). Менее благоприятным свойством стекла является его чувствительность к быстрым сменам температур, которая нередко приводит к растрескиванию стеклянных изделий. Стекло, нагретое до высокой температуры, следует охлаждать очень медленно, так как иначе возникают внутренние натяжения, вызывающие растрескивание стекла после его охлаждения. В противоположность этому для некоторых боросиликатных стекол (дюракс, резиста) устойчивость к сменам температур достигается как раз путем внезапного охлаждения сформованных изделий. [c.550]

    Резистами в электронолитографии могут быть любые полимеры, свойства которых дифференцируются под действием электронного пучка. Из-за высокой энергии электронов полимеры могут не содержать особых хромофорных групп и для технического использования в позитивных слоях должны обладать достаточно узким молекулярно-массовым распределением, которое обеспечивает постоянство свойств во всем объеме рельефа [94]. Негативные резисты более чувствительны, и у них наблюдается больший диапазон чувствительности, чем у позитивных. На примере большого числа полимеров показано, что в ряду негативных резистов чувствительность не является линейной функцией молекулярной массы. Среди негативных — полимеры, содержащие олефины и эпоксисоединения, обладают наибольшей скоростью структурирования. Сенсибилизаторы мало влияют на электроночувствитель-ность вследствие неселективности возбуждающего излучения. [c.134]


Смотреть страницы где упоминается термин Резисты свойства: [c.6]    [c.28]    [c.48]    [c.63]    [c.81]    [c.179]    [c.185]    [c.186]    [c.252]    [c.254]    [c.263]    [c.273]   
Новое в технологии соединений фтора (1984) -- [ c.242 ]




ПОИСК







© 2024 chem21.info Реклама на сайте