Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Масс-спектрометрия ионная интенсивность

    Вторая задача при калибровке масс-спектрометра состоит в установлении зависимости между интенсивностью ионного тока и парциальным давлением компонентов в напускной системе. Соотношение давления газа в баллоне напуска и размера диафрагмы должно обеспечить линейную зависимость интенсивности пиков в спектре от давления. [c.263]


    Изменяя напряженность магнитного поля, ионизированные частицы (или ионы) фокусируют на детектор, входящий в измерительную систему (рис. 31.14). Сигналы детектора записывают в виде масс-спектра по полученному масс-спектру идентифицируют вещества, определяют их массы и строение. По интенсивности ионных токов определяют количества вещества. Разделение и распознавание ионов в масс-спектрометрах основаны на зависимости их движения в электрическом и магнитном полях от собственной массы и скорости, описываемой уравнением  [c.751]

    Качественный анализ и идентиф икация органических соединений с помощью масс-спектрометра высокого разрешения с двойной фокусировкой основаны на точном определении разности масс ионов в сочетании с известными дефектами масс изотопов атомов в исследуемых веществах. Этот метод, впервые предложенный Бейноном [214—216] для качественного анализа соединений относительно низкого молекулярного веса (меньше 250), представляет собой спектроскопию дефектов масс и при выводе структурной формулы учитывает соотношение интенсивностей пиков ионов, входящих в состав мультиплетов, обладаюишх одинаковой номинальной массой. [c.125]

    Достоинства метода ионизации сложных смесей фотонами при энергии 10,2 эВ рассмотрены в работе [199]. Эти же авторы применили фотоионизационную масс-спектрометрию по методике молекулярных ионов для анализа высоко- и низкокипящих фракций нефти [189]. Такая техника близка к низковольтной масс-спектрометрии электронного удара, но благодаря изменению характера физического взаимодействия с веществом при переходе от электронов к фотонам и сохранении интенсивного пика молекулярных ионов, повышается доля наиболее энергетически выгодных (обычно наиболее ценных для структурного анализа) первичных процессов фрагментации. Ионизация фотонами в сочетании с химической ионизацией [200] была применена для получения отпечатка пальцев и частичного количественного анализа смесей аренов и алканов. [c.135]

    Исследуемый образец вводят в систему напуска масс-спектрометра, записывают количество введенного газа и регистрируют ионные токи в диапазоне массовых чисел от 1 до 80. Все интенсивности ионных токов приводят к единой шкале измерений. [c.268]

    Метод идентификации веществ по их масс-спектрам состоит в переводе непрерывно выходящей из хроматографической колонки газовой смеси в ионный источник масс-спектрометра, который настроен на определенную массу. Самописец масс-спектрометра записывает параллельно с самописцем хроматографа масс-спектро-хроматограмму. Идентификация основана на определении отношения показаний основной хроматограммы к интенсивности линий, измеренных по масс-спектрограмме. При этом чувствительность [c.123]


    Пучок первичных ионов (Аг+, N2+, СН3+, Hg+), ускоренных напряжением 2,5—7 кв, после прохождения через магнитный анализатор бомбардирует поверхность исследуемой мишени, образующиеся вторичные ионы поступают во второй масс-спектрометр, и интенсивность пиков с разными т/е регистрируют умножителем. Для анализа достаточно 1 10 —1 10" г металла. [c.128]

    Многие молекулы либо не обладают достаточной летучестью, либо недостаточно устойчивы по отношению к электронной бомбардировке, чтобы можно было определить молекулярную массу с помощью масс-спектрометрии, если только не применять метод ионизации полем. Если молекулярные ионы нельзя зарегистрировать при температуре испарения вещества и бомбардировке электронами с энергией 70 эВ, то они обычно не наблюдаются и при более низкой энергии электронов. Хотя снижение энергии электронов приводит к у-величению интенсивности пика молекулярного иона по сравнению с пиками фрагментов, абсолютная интенсивность пика молекулярного иона снижается. В методе ионизации полем в зазоре между двумя металлическими электродами создается электрическое поле напряженностью 510 В/см. Как только газообразная молекула попадает в такое поле, она ионизуется. Этот процесс носит название ионизации полем. На силу тока образующихся [c.325]

    Неоднократно указывалось на аналогию между реакциями карбониевых ионов в растворах и реакциями в газовой фазе ионов, генерируемых и детектируемых в масс-спектрометре. Действительно, эта область масс-спектрометрии очень интенсивно изучается в настоящее время. Однако остается открытым вопрос о том, в какой степени применимы эти данные к реакциям в растворе (и наоборот), особенно если учесть, что масс-спектрометр измеряет только отношение массы к заряду. Именно поэтому этот метод не дает непосредственных данных о структуре газообразных карбоний-ионов и имеется много данных о том, что далеко не всегда справедливо полагать, что по этому методу карбониевые ионы образуются из своих предшественников в соответствии с правилом наименьших структурных изменений [890]. [c.23]

    Таким образом, уравнение Гамметта может быть использовано для корреляционного анализа не только скоростей реакций и равновесий, но и любых свойств, связанных непосредственно или опосредствованно с изменениями свободной энергии. В настоящее время уравнение Гамметта используют для корреляционного анализа данных ИК-спектроскопии (частоты и интенсивности колебаний), УФ-спектроскопии (Хмакс и е), ЯМР-спектроскопии (химические сдвиги), масс-спектрометрии (относительная интенсивность общих осколочных ионов), полярографии (полуволновые потенциалы), дипольных моментов и др., в том числе для корреляционного анализа теоретических величин, например (электронная плотность на атомах). [c.175]

    Если анализируемый пар, напускаемый в ионный источник масс-спектрометра, термически уравновешен со стенками области ионизации, между интенсивностью ионного тока иона /+ и давлением в области ионизации р существует соотношение [c.62]

    Таким образом, используя расширенный набор аналитических характеристик можно получить более подробные данные о структуре анализируемой смеси сераорганических соединений методом масс-спектрометрии. На основании распределения интенсивностей пиков молекулярных и осколочных ионов возможно определение степени замещения и распределения по длине цепи для каждого типа соединений в смеси. [c.208]

    Метод пиролиза был использован при исследовании смолистых отложений на алюмо-кобальто-молибденовом катализаторе [21]. Пиролиз проводился в специальной пиролитической ячейке, присоединенной к ионному источнику масс-спектрометра МХ-1303. Температура пиролиза повышалась с постоянной скоростью 10° С в 1 мин. от 20 до 500° С масс-спектры снимались через каждые 2—3 мин. По полученным масс-спектрам определяли состав продуктов пиролиза в каждый момент времени, а интегрированием интенсивностей пиков во времени — суммарный состав продуктов пиролиза и интегральную кривую газовыделения. Эти дв аппара-турно-методических варианта анализа смолисто-асфальтеновых веществ представляются перспективными [21, 22]. [c.170]

    Следует иметь в виду, что в отличие от других разновидностей масс-спектрометрии, где скорость сканирования спектров не имеет принципиального значения, в хромато-масс-спектрометрии она лимитируется временем выхода компонента из колонки (для капиллярных колонок от 2 до 10 с). Этим обусловлен один из двух дополнительных источников искажений масс-спектров при хромато-масс-снектрометрическом анализе 1) за счет изменения количества вещества, поступающего в источник ионов во время выхода хроматографического пика, и 2) за счет наложения на спектр исследуемого соединения сигналов фона неподвижной фазы, особенно ири высоких рабочих температурах. Для борьбы с этими источниками погрешностей спектров уменьшают время сканирования, используют статистическую обработку нескольких спектров, записанных в разных точках хроматографического пика, и работают, по возможности, с максимально термостабильными неподвижными фазами, из которых наиболее перспективны силиконовые эластомеры, либо, при анализе низкокипящих веществ, неорганические или полимерные сорбенты. Статистическая обработка нескольких спектров одного и того же соединения представляет собой несложный, но крайне эффективный прием, с помощью которого легко выявляются сигналы фона и примесей других веществ. Критерием их обнаружения служит плохая воспроизводимость относительных интенсивностей соответствующих им пиков масс-спектра. [c.205]


    Методы фотоионизации довольно слабо использовались для идентификации промежуточных продуктов, однако с появлением лазеров в ионизационных измерениях их диапазон существенно расширился. Основная идея заключается в том, что пучком фотонов с одинаковой энергией можно ионизовать промежуточный продукт реакции (например, СНз), не вызывая ионизации и фрагментации вещества-предшественника (например, СН4), или ионизовать молекулы вещества в высоком возбужденном состоянии, не затрагивая молекулы в более низких состояниях. При этом достигается высокая чувствительность, так как ионы образуются лишь тогда, когда есть промежуточный продукт, для идентификации ионов по массе можно использовать масс-спектрометры. Многоквантовая ионизация и резонансно-усиленная многоквантовая ионизация (см. разд. 3.9) обеспечивают ионизацию различных веществ без использования источников вакуумного УФ-излучения. Под действием лазерного излучения высокой интенсивности можно получить очень высокие квантовые выходы ионизации. [c.198]

    Весьма перспективен метод масс-спектроскопии, основанный на определении массы (т) или отношения массы к ее заряду mie) и на определении относительного количества ионов, получаемых из исследуемой смеси частиц. Можно точно измерить массы ионизированных частиц на основании данных, полученных при разделении их в пространстве и во времени. Заряженные частицы разделяют, пропуская их через электрическое и магнитное поле. Полученный масс-спектр состоит из отдельных линий различной интенсивности и толщины. Линии регистрируют фотографическим (масс-спектрография) и электрическим способами (масс-спектрометрия). [c.451]

    Масс-спектры состоят из линий, обусловленных осколками молекул эти осколки возникают в результате разрыва молекулы под действием электронного удара. Затем ионизированные осколки и ионы молекул ускоряются в магнитном поле в разной степени в зависимости от величины М е М — масса иона в атомных единицах е — заряд иона в единицах заряда электрона) и таким образом могут быть разделены. Ионизация происходит в ионном источнике масс-спектрометра, большей частью путем бомбардировки электронами. Ионные токи, обусловленные каждым видом ионов, усиливаются и регистрируются и являются мерой вероятности, с которой возникает данный осколок. Положение линий на шкале масс и относительные частоты ионов являются одинаково важными характеристиками масс-спектра данного соединения. Частоту наиболее интенсивной линии в спектре считают равной ста и относят частоты всех других ионов к этой линии (относительный спектр). Различные функциональные группы соединений обусловливают, как правило, различные масс-спектры, которые можно предсказать заранее. Относительный спектр при обычных условиях большей частью хорошо воспроизводится и характеризует данное вещество. Часто масс-спектры изомеров различаются между собой по относительной интенсивности линий, и это обстоятельство достаточно для однозначной идентификации изомеров даже в тех случаях, когда они имеют одинаковые массовые числа, как это большей частью бывает. [c.265]

    В масс-спектрометре происходит разделение ионизированных молекул и возникающих из них заряженных осколков по их массам. Масс-спектр вещества представляет собой ряд пиков, каждый из которых соответствует ионам с данным отношением массы к заряду tnje), причем последний обычно равен единице. Поэтому величина т/е чаще всего равна массе данного иона. Интенсивность пика зависит, в первую очередь, от стабильности соответствующего ему иона, а последняя определяется законами, хорошо известными из органической химии. Анализируя масс-спектр, можно получить ценные сведения о структуре исследуемой молекулы. [c.69]

    Фонер и Хадсон [1576] измерили потенциал ионизации ОН прямым методом. Молекулы гидроксила, образующиеся при разряде в парах воды или перекиси водорода, поступали в ионизационную камеру масс-спектрометра. Сравнение интенсивностей ионных токов 0Н + и стандарта Аг при различных энергиях электронов привело к значению потенциала ионизации гидроксила, равному 13,18+0,1 эв или 304 ккал/моль. В работе [1576] был также измерен потенциал появления иона ОН при диссоциативной ионизации молекул Н О. Найденная величина (18,19+0,1 эв) значительно отличается от значений, полученных в работах [2762, 2616]. [c.235]

    Среди современных методов исследования углеводородов необходимо еще отметить масс-спектрометрию. Под влиянием интенсивной бомбардировки ионами, например положительными, молекула исследуемого вещества разбивается на частицы, заря-жегпше противоположными зарядами. Если эти частицы пропускать через магнитное поле, то они отклоняются от прямого пути, и при одинаковом заряде их скорость пропорциональна их массам. Пр51 помощи масс-спектрометра (рис. 19) ионы группируютсл в серии спектров одинаковой массы число частиц и скорость движения этих спектров регист])ируют прибором. Количества каждой массы рассчитывают по спектрограммам (см. рис. 19). Масс-спектры неодинаковы но только у молекул различного молекулярного веса, но и у изомеров. Метод применяется преимущественно для исследования газов и паров легкокипящих веществ, но был использован также и для изучения более высокомолекулярных углеводородов [2, т. I]. [c.96]

    При определении группового состава сложных смесей, представленных в нефтяных фракциях [171], аналитическими характеристиками служат суммарные интенсивности пиков определенных серий так называемых характеристических ионов. Определение неизвестных концентраций различных типов соединений осуществляется решением системы линейных уравнений, учитывающих взаимные наложения их масс-спектров. Калибровочные коэффициенты— элементы матрицы этой системы уравнений — определяются на основании анализа узких фракций модельных смесей, а также с помощью математических мQдeлeй, основанных на эмпирических корреляциях масс-спектров со структурой молекул. Анализ группового состава в конечном счете выводится из известных и все пополняемых масс-спектров индивидуальных соединений. Подробно эти принципы и методики количественного анализа с применением масс-спектрометрии рассмотрены в монографиях [166, 167]. [c.132]

    Для метода характеристических сумм используют масс-спектры, полученные при высокой энергии ионизирующих электронов (70 эВ), для метода молекулярных ионов чаще используют масс-спектры низких энергий (10— 2 эВ). При этом резко падает интенсивность пиков осколочных ионов (становятся неотличимыми от фона) и одновременно повышается интенсивность пиков молекулярных ионов, что облегчает их выделение из смеси, и дает возможность более точного определения изотопных пиков. Уменьшение энергии ионизирующих электронов позволяет снизить интенсивность побочных процессов, таких, как выделение алкенов из алкил-бензолов, полициклических циклоалканов. и др. [181 —183]. Низковольтная масс-спектрометрия используется крайне редко (за исключением анализа азотсодержащих соединений). [c.133]

    Для анализа продуктов нефти может быть использовано ценное свойство масс-спектров полевой ионизации-—их малолинейча-тость и обязательное присутствие интенсивного пика молекулярного иона. Отсюда появляется хорошая возможность применения молекулярных ионов [193, 194]. В рассматриваемых работах проведено сравнение метода полевой ионизации с низковольтной масс-спектрометрией электронного удара [193] и с методом характеристических сумм [194]. Метод полевой ионизации был применен для количественного анализа легких бензиновых фракций [195] и тяжелых нефтяных фракций с температурой кипения 300—350°С и молекулярной массой до 700 [196]. К сожалению, из-за повышенной и сильно зависящей от условий съемки интенсивности пика [М -f Н]+ (взаимодействие с парами остаточной воды, катализ) затруднено использование пиков изотопных ионов. [c.135]

    Широкое применение в химической кинетике находит масс-спектрометрический метод. Непосредственным об1 ектом регистрации в масс-спектрометрах являются ионы в высоко.м вакууме. Молекулярный пучок ионов, ускоренный полем в несколько киловольт, попадает далее в магнитное поле, где ионы с различным отношением массы к заряду (т/е) в различной степени отклоняются от прямоли- ейной траектории и регистрируются в виде отдельных узких пиков, интенсивность которых пропорциональна содержанию соответствующих ионов в исходном пучке. Набор этих пиков и представляет собой масс-спектр. [c.44]

    Масс-спектрометрия диссоциативного захвата электронов (отрицательных ионов) также использовалась для структурного анализа нефтяных фракций. Достоинством этого метода является обя-зателт-ное появление интенсивного пика молекулярного иона или (М—Н)-, а также (М—Нг) - — для большинства известных клас- [c.135]

    Аддитивность масс-спектров компо нентов смеси н прямая заппсимость между количеством вещества и интенсивностью ионных токов делают масс-спектрометр гибким и высокочувствительным аналитическим прибором в широких диапазонах концентраций. Так как интенсивность ионного тока связана только с числом молекул определенного сорта, то полученная информация характеризует молекулярный состав смеси, а не является усредненной , что присуще другим физическим методам. Возможность определения массы молекул позволяет детально описать данный тип молекул смеси. В результате этого масс-спектрометр в области установления группового состава смеси не имеет соперников среди других физических методов. [c.4]

    При промывке прибора аргоном интенсивность пика, отвечающего ионам с массой 71 в спектре изопонанола уменьшалась в 1,5—2 раза, а при откачке аргона опять возрастала (рнс. 15). Иная картина наблюдалась при промывке вакуумной системы масс-спектрометра водородом (рис. 16). При натекании последнего в ионный источник возрастал пик, на [c.46]

    Аналогичные выводы следуют и из работы Наталис [121] который показал, что при электронной бомбардировке этиле новых углеводородов типа К—СН = СН—К, где К и К — ме тильный, этильный, втор-пропильпый и трег-бутильный ради калы, отношение интенсивностей пиков молекулярнь(х ионов транс- и цыс-изомеров по мере увеличения радикала возрастает. Наблюдаемый эо[)фект связан с освобождением при ионизации цис-изомера с большим алкильным радикалом избыточной энергии, что способствует более быстрому распаду образующегося иона. Авторами на масс-спектрометре МХ-1304 было проведено исследование масс-спектров цис- и гранс-изомеров пентена-2. Оказалось, что при энергии электронов 70 эв кривые распределения обоих изомеров практически идентичны, но при 20 эв количество ионов, содержащих 5 атомов углерода для транс-пентена-2 примерно на 20% больше, чем для цис-пентена-2, что позволяет идентифицировать эти изомеры. [c.60]

    Большое влияние на стабильность распределения интенсивностей в масс-спектре оказывают адсорбционные эффекты. Изменение интенсивности пиков в процессе съемки может быть вызвано также разложением анализируемого вещества в баллоне напуска, на пути к источнику и на раскаленном катоде. Некоторые изменения распределения интенсивностей в масс-спектрах имеют место вследствие дискриминации, связанной с типом развертки масс-спектры, снятые при изменении ускоряющего напряжения, могут значительно отличаться от масс-спектров, полученных с помощью магнитной развертки, что затрудняет их сопоставление. Спектры одних и тех же соединений, снятые на 60-, 90- и 180-градусных масс-спектрометрах, отличаются друг от друга [60]. При этом распределение интенсивностей ионов в масс-спектрах, снятых на раз личных приборах, изменяется различно в зависимости от типа исследуемогй соединения. [c.132]

    ЮВЫХ углеводородов было пока 5ано, что интенсивность пиков молекулярных понов для изомеров нормального и разветвленного строения существенно различна. Наиболее отчетливо это различие проявляется в величине отношения суммарной интенсивности характеристических ионов (243) к величине пика молекулярного иона Р [281, 282]. В табл. 18 приведены отношения интенсивностей характеристических ионов к молекулярному, рассчитанные по масс-спектрам нормальных метановых углеводородов, снятым на модифицированном [183] отечественном масс-спектрометре МС-1, масс-спектрометре МХ-1303 и опубликованным в каталоге [76]. [c.152]

    Масс-спектры состоят из линий, соответствующих осколкам молекул с определенным отношением их массы к заряду. Эти осколки образуются в ионизационной камере масс-спектрометра в результате действия электронного удара. Затем ионизированные осколки и ионы ускоряются в. магнитном поле, причем угол отклонения пучка ионов зависит от отношения массы осколка или иона М к его заряду е. Ионные токи, обусловленные каждым пучком ионов, пос- ле усиления регистрируются самописцем. Положение линий на шкале масс и их относительная интенсивность являются важными характеристиками масс-спектра данного соединения. Масс-спектры изомеров различаются по относительной интенсивности линий. Относительный спектр масс хорошо воспроизводится. Все это обуслов- ливает успешное применение масс-спектров для однозначной идентификации соединений, в том числе и изомеров. [c.196]

    Метод масс-спектрометрии сснован на изучении органических ионов (осколочных ионов), образующихся под действием электронного удара пучка электронов с энергией в несколько десятков электронвольт. Результаты получаются в виде масс-спектров, в которых регистрируются типы получившихся осколочных ионов (характеристикой каждого из Ш1Х является отношение массы к заряду т е) и интенсивность каждой масс-спектральной линии, отражающая число образовавшихся ионов данного типа. С помощью масс-спектрометрии легко определить и молекулярные массы органического вещества. Уже небольшие изменения строения отражаются в масс-спектрах, как это видно из сравнения масс-спектров бутана и изобутана (рис. 33). [c.361]

    Ханнеман (1961) предложил метод идентификации, специально предназначенный для газовой хроматографии. Он переводил непрерывно выходящий пз колонки газ в ионный источник масс-спектрометра, который был настроен на определенную массу. Самописец масс-спектрометра записывает дополнительно хроматограмму в те же моменты времени, когда записывается хроматограмма, получаемая при помощи катарометра. Идентификация основана на анализе отношения показаний самописца (показаний катарометра) к интенсивности линий. [c.266]

    Оси. методом определения атомных и мол. масс летучих в-в является масс-спектрометрия. Для исследования смеси соед. эффективно использование хромато-масс-спектромет-рии. При малой интенсивности пика мол. иона применяют эффузиометрич. приставки к масс-спектрометрам. Эффузио-метрич. способ основан на том, что скорость вытекания газа в вакуум из камеры через отверстие, диаметр к-рого значительно меньше среднего пути своб. пробега молекулы, обратно пропорциональна квадратному корню из М.м. в-ва скорость вытекания контролируют по изменению давления в камере. М.м. летучих соед. определяют также методами газовой хроматографии с газовыми весами Мартина. Последние измеряют скорость перемещения газа в канале, соединяющем трубки, по к-рым текут газ-носитель и газ из хроматографич. колонки, что позволяет определять разницу плотностей зтих газов, зависящую от М.м. исследуемого в-ва. [c.113]

    Совр. метод масс-спектрометрии с использованием Ц. р.-спектрометрия ИЦР с преобразованием Фурье (ИЦР ПФ). Резонансное поглощение ионами электромагн. энергии происходит в анализаторе. Высокочастотное электрич. поле Позволяет вдентифицировать ионы по резонансному поглощению энергии при совпадении частоты поля и циклотронной частоты ионов с послед. фурье-анаг1изом (см. Фурье-спектроскопия) сигнала. Интенсивность сигнала от фуппы ионов массы т,- и заряда представляет собой экспоненциально затухающую косинусоиду  [c.375]


Смотреть страницы где упоминается термин Масс-спектрометрия ионная интенсивность: [c.619]    [c.78]    [c.316]    [c.116]    [c.95]    [c.269]    [c.133]    [c.183]    [c.186]    [c.23]    [c.270]    [c.314]    [c.349]    [c.319]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.366 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.366 ]




ПОИСК





Смотрите так же термины и статьи:

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия масс-спектрометры

Масс-спектрометрия пик, интенсивность



© 2025 chem21.info Реклама на сайте