Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

замещение, получение с использованием

    Реакция между алкилгалогенидами и аммиаком или первичными аминами обычно непригодна для синтеза первичных или вторичных аминов, так как последние являются более сильными основаниями, чем аммиак, и сами предпочтительно атакуют субстрат. Однако эта реакция может оказаться весьма полезной для получения третичных аминов [657] и четвертичных аммониевых солей. Если в качестве нуклеофила выступает аммиак, то три или четыре алкильные группы, связанные с атомом азота в продукте, окажутся одинаковыми. При использовании первичных, вторичных или третичных аминов можно получить соединения, в которых с атомом азота связаны различные алкильные группы. Превращение третичных аминов в четвертичные соли называется реакцией Меншуткина [658]. Иногда этим методом удается приготовить также первичные амины (при использовании большого избытка аммиака) и вторичные амины (при использовании большого избытка первичного амина). Однако ограничение такого подхода хорошо иллюстрируется реакцией насыщенного раствора аммиака в 90 %,-ном этаноле с этилбромидом при молярном отношении реагентов 16 1, в которой выход первичного амина достигал лишь 34,2 %, (при отношении реагентов 1 1 выход составлял 11,3%) [659]. Субстраты лишь одного типа дают приемлемые выходы первичных аминов (при условии, что аммиак взят в большом избытке) — это а-замещенные кислоты, которые превращаются в аминокислоты. [c.146]


    К первому относятся металлокомплексные соединения переходных металлов (Ре, Со, N1, Си, Мп, Мо) и в качестве лигандов к ним — соединения хелатного типа (шиффовы основания, дитиофосфаты, дитиокарбаматы, р-дикетоны), имеющие в своем составе атомы Ы, 8, О, Р. Выбор лигандов обусловливается термоокислительной стабильностью (при 150—280°С) соединений, полученных на их основе. Для повышения их растворимости в нефтяных фракциях [0,1-"8% (масс.)] применяют комплексы, содержащие олеофильные заместители (алкильные, алк-оксильные или ароматические). К второму типу относятся Ыа-, К-, Ы-, Mg-, Са-, Зг- и Ва-соли карбоновых, дитиофосфорных и дитиокарбоновых кислот. Третий тип металлсодержащих ингибиторов окисления включает сульфиды, оксиды, гидроксиды и соли, диспергированные в нефтепродуктах при 150—250 °С с помощью ультразвука и другими методами. К четвертому типу противоокислителей относятся почти все перечисленные металлсодержащие производных алкилароматических аминов, замещенных фенолов и хинонов. Такие композиции присадок эффективны и в синтетических маслах на основе сложных эфиров при температуре до 250—260°С. В ряде случаев использование этих композиций позволяет получить присадки полифункцио-нального действия. [c.94]

    Второй путь — это квантовохимический анализ реакций электрофильного замещения. Именно для этих реакций впервые были сформулированы и использованы рассмотренные выше индексы реакционной способности — как в приближении изолированной молекулы, так и приближении локализации. Применение этих индексов, рассчитанных в я-электронном приближении, к реакциям альтернантных ароматических углеводородов было детально обсуждено в уже упоминавшихся монографиях [1—6]. Что касается неальтернантных систем, то, как уже говорилось, для них исчезает соответствие между предсказаниями, получаемыми с помощью различных индексов. Дополнительные трудности появляются и при необходимости рассмотрения гетероатомов, параметризация для которых в я-электронных методах довольно неоднозначна. Это легко видеть на примере теоретических оценок активности различных положений молекулы тиофена в реакциях электрофильного замещения, полученных в различных вариантах я-электронного подхода с использованием разных индексов реакционной способности (табл. 4.1). [c.220]

    Для получения продуктов с высоким выходом необходима осторожность в выборе реагента. Так, реагент Гриньяра замещает водород в гидридах кремния гораздо медленнее, чем литийорга-нические соединения, и потому его (а не RLi) применяют в реакциях типа (46). В то же время многие сильные нуклеофилы реагируют с силанами с замещением водорода. Ниже приведено несколько примеров такого замещения с использованием С-нуклеофилов схемы (54) — (57), соответственно по работам [77— 79] . [c.94]


    Следует отметить, что пластовые воды Азербайджана значительно изменяются от почти пресных до относительно высокоминерализованных. По нашему мнению, это явление объясняется тем, что поровые воды высокой солености частично могут отжиматься из глин в песчаные пласты, особенно в районах фациальных замещений песчаных пластов глинами. Помимо этого можно предполагать проникновение поверхностных пресных вод в песчаники, приводящее к опреснению этих вод в такой степени, что они становятся пригодными для бытовых нужд и даже ставится вопрос о возможности их использования для дополнительного получения пресных вод. [c.77]

    Адекватное описание полученных экспериментальных данных единым корреляционным уравнением свидетельствует о единстве механизма процесса алкилирования для изученных олефинов во всех использованных средах и температурных режимах [173]. Было установлено, что контролируемые в экспериментах факторы и их взаимодействия оказывают влияние на процесс, но эти влияния неодинаковы для замещения и В . [c.94]

    Влияние на тип реакции (элиминирование или замещение). В условиях протекания реакции второго порядка -разветвление способствует элиминированию до тех пор, пока третичный субстрат не начинает подвергаться реакциям 5к2 (см. т. 2, гл. 10). В качестве примера в табл. 17.2 приведены данные, полученные для некоторых простых алкилбромидов. Аналогичные результаты наблюдались при использовании в каче- [c.33]

    На долю триметилбензолов приходится около 35% общего количества ароматических углеводородов бензольного ряда, образующихся при каталитическом риформинге, но пока они используются в качестве химического сырья незначительно [64]. Перспективы использования полиметилбензолов определяются прежде всего возможностью окисления их в три- и тетракарбоновые кислоты ароматического ряда и их ангидриды. Эти полифункциональные мономеры пригодны для получения термостойких полимеров и полиэфиров, а также низколетучих пластификаторов. Интересной может быть также высокая селективность замещения полиметилбензолов, в особенности имеющих симметричную структуру дурола и мезитилена. 100%-пая селективность замещения достигается при получении производных изодурола, пренитола и, естественно, пентаметилбензола. Псевдокумол дает 80% 1,2,4,5-заме-щенного и 20% 1,2,3,4-изомера, при замещении гемимеллитола получают 95% 1,2,3,5-изомера [107]. Правда, высокая селективность замещения еще не определяет возможности крупнотоннажного производства соответствующих производных. Приходится считаться и со стерическими препятствиями, которые неблагоприятно влияют на реакционную способность получаемых веществ. [c.88]

    На установке использован микросферический катализатор крекинга ДА-250 фирмы Грейс (США), полученный на основе прокаленного цеолита с высокой степенью замещения редкоземельными элементами. [c.142]

    Синтез 1П0 Фишеру—Тропшу рассматривался первоначально как синтез бензина, и переработка первичных продуктов была полностью подчинена задаче получения максимального количества бензина. Позднее выяснились большие возможности использования средних фракций синтеза как сырья для проведения различных реакций замещения и-парафинового гача как сырья для окисления или для производства синтетических смазочных масел. После этого основной операцией переработки продуктов синтеза стала их ректификация. [c.105]

    Аминокислота (/1), аминогруппа которой замещена группировкой (У), конденсируется с другой аминокислотой (Б), имеющей защищенную остатком V карбоксильную группу. После того как получен полностью защищенный пептид (В), либо удаляют сразу обе защитные группы и получают свободный пептид (Г), либо проводят избирательное удаление одной из групп У или У. Образующийся в последнем случае замещенный пептид (Д) или ( ) может быть использован для дальнейших синтезов. [c.385]

    Обратная реакция — превращение гидроксипроизводных в аминопроизводные — широко используется в нафталиновом ряду преи мущественно для получения производных р-ряда, которые трудно синтезировать иным методом. Особенно важна при этом реакция Бухерера, которая будет рассмотрена несколько позже. В отдельных случаях для этого может быть использован и кислотно-ката-лизируемый процесс нуклеофильного замещения гидроксильной группы. Обычно для его осуществления соответствующие гидрокси-соединения нагревают с водным аммиаком и катализаторами (хлорид цинка, хлорид кальция и хлорид аммония) под давлением при 200 250 "С. [c.206]

    Разработан метод получения водорастворимых ПАВ с высоким дипольным моментом на основе натриевых солей 5-алкилсульфонил-3-нитро-1,2,4-триазолов и 5-алкилтио-3-нитро-1,2,4-триазолов путём нуклеофильного замещения с использованием [c.111]

    Этот метод рекомендуется для получения соединений, труднодоступных по реакции замещения с использованием катиона нитрония N02" и родственных соединений. Например, перекись /г-нитробензоила дает /г-динитробензол (34%) при разложении в присутствии газообразной двуокиси азота [44]. [c.46]


    Способы получения А.-ф. с. и обычных феноло-формальдегидных смол во многом сходны. Природа фенола, катализатора и соотношение реагирующих веществ оказывают существенное влияние на механизм и скорость реакции, а также па строение образующихся продуктов. При поликонденсации в загелых средах и и збытке фенола получают новолачны( А.-ф. с. Наибольшее практич. значение приобрели резольные А.-ф. с., получаемые в присутствии щелочного катализатора и избытка формальдегида. На первой стадии реакции фенола с формальдегидом образуются феноло-спирты при этом ж-замещешше фенолы более реакцион-поспособны, чем о- и -замещенные. При использовании [c.43]

    Гексадейтеробензол получен из бензола прямым замещением при использовании дейтерированной серной кислоты Моно-и 1,4-дидейтеробензолы получены через соответствующие соединения Гриньяра Аналогичным путем получены также 1,3,5-три-, 1,2,4,5-тетра- и пентадейтеробензолы [c.204]

    Реакции нуклеофильного замещения с использованием низкомолекулярных нуклеофильных реагентов, как правило, могут быть осуществлены для производных целлюлозы, в которых связь между углеродным атомом и замещаемой группой сильно поляризована . К таким производным относятся эфиры целлюлозы с сильными органическими и минеральными кислотами (сульфокислотами, азотной, фосфорной, серной кислотдй), а также галогендез-оксипроизводные целлюлозы (иод- и хлордезоксицеллюлоза), полученные, в свою очередь, по реакции нуклеофильного замещения. Из указанных производных целлюлозы наибольший интерес представляет использование нитратов целлюлозы. Если бы удалось осуществить синтез новых производных целлюлозы по реакции нуклеофильного замещения в водной среде, исходя из нитрата целлюлозы, то этот метод, бесспорно, получил бы не только препаративное, но и практическое значение. [c.431]

    МОЖНО провести восстановление диазогруппы, т. е. формально замещение на водород (0,5—4 ч, 40 °С [93]). По другой методике диазосоединение перемешивают с гипофосфорной кислотой в хлороформе в присутствии небольшого количества оксида меди и (если необходимо) 18-крауна-б [94]. На основе получения краун-катионных комплексов и последующем генерировании арилраднкалов были разработаны идущие с высокими выходами методы синтеза арилбромидов и арилиодидов [855]. Галоге-нирование проводится в хлороформе с использованием стабильных и безопасных тетрафенилборатов арилдиазония в присутствии каталитического количества 18-крауна-б и либо небольшого избытка бромтрихлорметана для получения бромидов, либо иодметана или молекулярного иода для получения иодидов. В ходе реакции образуется некоторое количество продуктов восстановления и хлорирования (О—8%). Если растворителем является бромхлорметан, то в качестве побочного продукта образуется гексахлорэтан. [c.282]

    Взаимодействие алкилмагнийгалогенидов с бромистым аллилом как метод получения 1-олефинов впервые было применено для синтеза 1-гек-сена и 5-метилгексена-1 [15]. С тех пор этот метод широко применяется для синтеза 1-олефинов, а также (при использовании замещенных галоидов аллилов) 2-олефинов. Если при синтезе исходить из аллилмагвийгало-генидов, то получаются очень плохие выходы. Впоследствии было показано, что как бромистый, так и хлористый аллилы дают RMgX лишь с выходом около 18% вследствие образования диаллила 131, 36]. Впрочем, при очень медленном добавлении эфирного раствора аллилбромида к магнию под эфирным слоем удается повысить выход аллилмагнийгало-генида до 70—82% (46, 120]. [c.409]

    Использование обычных, четвертичных аммониевых или фосфониевых солей [4, 38, 39], краун-эфиров [44, 77] или полиподных молекул типа 7 [46] не привело к существенному улучшению процесса, за исключением тех случаев, когда вследствие чувствительности субстрата к воде в реакцию вводился твердый K N [1035]. Например, в случае аллильных и бензильных галогенидов при применении водных растворов цианидов гидролиз может подавлять реакцию замещения. Тем не менее в литературе можно найти методики проведения таких реакций с использованием водного K N [70, 71, 82, 897]. Если желательно избежать присутствия воды, то для получения замещенных бен-зилцианидов можно с успехом применять твердофазную МФК-систему с 18-краун-6 в качестве катализатора. Аналогично получаются триметилсилилцианид [65] и цианформиат (R = фенил. [c.119]

    Однако Симхен и Коблер [67] считают, что при синтезе чувствительных к гидролизу соединений лучше использовать предварительно полученный и выделенный цианид четвертичного аммония в апротонных растворителях, таких, как ДМСО, ацетонитрил или метиленхлорид [67]. Описано также применение анионообменных смол в N-форме [1507]. В обычном МФК-процессе вместо краун-эфира можно использовать более дешевый катализатор — эфир полиэтиленгликоля 8, хотя он и несколько менее активен [47, 61]. В более поздних работах рекомендуют применять трехфазный катализ [62, 64, 68, 775, 860]. Как уже указывалось в разд. 3.1.4, эта техника в принципе очень привлекательна. Так, выдан патент на получение адипопитрила из 1,4-дихлорбутана с использованием в качестве катализатора ионообменной смолы амберлит IRA-400 [69]. Однако недавно было показано, что каталитическая активность трехфазного катализатора на основе полистирола с поперечными связями зависит от числа имеющихся групп R4N+. Высокая степень замещения в кольцах, как это характерно для продажных ионообменных смол, снижает возможность их использования в МФК-реакциях [64]. [c.120]

    Наиболее интересной из всех является циклическая система бицикло [2.2.1] гептадиена, где три конкурирующих первичных присоединения—1,2-экзо-, зндо- и 1,4-гомоприсоединение — ведут к получению большого числа продуктов [687, 703—705, 1665], особенно при использовании замещенных соединений. Аналогично ведет себя квадрициклан [1288], однако в этом случае преобладает третий продукт, структура которого приведена на схеме 3.173. Реакция с квадрицикланом свидетельствует, что генерируемый в условиях МФК ССЬ атакует даже напряженные циклопропаны. Другим примером является трехчленный цикл в 1,3-дегидроадамантане [1349]  [c.306]

    Выбор оптимального соотношения реагентов определяется экономическими факторами. При этом сопоставляют энергетические затраты, связанные с регенерацией и возвращением иа реакцию большого избытка пепревращеиного органического реагента, и повышенный расход сырья при снижении селективности процесса, когда этот избыток невелик. Оптимальное соотношение реагентов ио соответствует максимумам кривых на рис. 35 при получении первого продукта замещения оно равно (0,1н-0,2) 1, а при иолу-чсиии второго (0,3 0,5) 1 [соответственно, избыток органического вещества к хлору равен (5- 10) 1 или (3,3 2) 1]. Когда последующий продукт хлорирования также имеет практическую ценность, оптимальное соотношение реагентов изменяют в сторону использования большего количества хлора. При получении пер-х.юр производиых применяют даже избыток хлора по сравнению с е 0 стехиометрическим количеством, чтобы обеспечить более пол-н )с замещение. [c.110]

    В спектре ПМР соединения II (рис. 4.1,а), полученного при алкилировании бензола 3-(оксиметил-02)-1,2-бензоциклогексе-ном (I), полностью отсутствуют сигналы и. что обусловливается фиксацией дейтерия в положении 3 полученного алкилата (II). К аналогичному выводу приводит анализ спектров ЯМР (рис. 4.1, б) и С (рис. 4.1, в). В последнем, кроме сигналов десяти углеродных атомов ароматических фрагментов в области 125—159 млн , идентифицированы сигналы С(4>, С(3), С(6), С(7) полиметиленового кольца (б, равные соответственно-45,6, 41,6, 28,2, 36,3 млн- ) при использовании методики двойного резонанса С— Н. Сигнал С(з) в спектре не виден вследствие полного замещения окружающих его протонов дейтронами. Расчет показывает, что в положении 3 анализируемого соединения сосредоточено 99 3% изотопа Н. [c.127]

    Теории алкилирования чнафталина по сравнемю с хорошо изученной реакцией Фриделя — Крафтса бензола и его производных уделялось сравнительно меньше внимания, несмотря на широкое использование замещенных нафталинов в промышленном производстве. Алкилнафталины применяют в качестве присадок, понижающих температуру застывания смазочных масел, добавок к авиационному топливу, смазочных масел, исходных продуктов для производства на их основе красителей, фармацевтических препаратов, для получения поверхностно-активных веществ, ингибиторов коррозии, гидрофобизаторов, ускорителей вулканизации, эффективных заменителей тЛтепродуктов, рабочих жидкостей для вакуумных механически насосов и др. [c.153]

    Количественная характеристика распределения алкильных заместителей по длине и степени замещения может быть найдена с использованием распределений интенсивностей пиков молекулярных и осколочных ионов, образованных при отщеплений этих заместителей [8], Условия получения масс-спектров должны быть такими, чтобы вторичные процессы распада были бы сведены к минимуму. Для ароматических сернистых соединений типа тиофенов, бензотиофенов и т. п. такие процессы малоинтенсивны даже при обычно используемых энергиях ионизирующих электронов 50—70 эВ. Для насыщенных циклических сульфидов следует использовать более низкие энергии ионизирующих электронов 12—18 эВ, при которых энергия, передаваемая молекулярному иону, достаточно велика, чтобы вызвать его распад, но недостаточна для осуществления целой цепи последовательных распадов. Цепь распадов в этом случае останавливается на первом этапе. [c.205]

    Аналогичным образом находится соотношение затрат на производство бензина и компримированного природного газа, обеспечивающее равноэффективное их использование (рис. 5.6,6). При этом необходимо учитывать коэффициент замещения бензина газом исходя из норм расхода этих топлив на автомобилях он равен 1,35, т. е. 1 т бензина эквивалентна 1350 м газа. На рис. 5.6, б дано соотношение приведенных затрат на добычу нефти и природного газа, при которых производство бензина и сжатого газа обеспечивает одинаковую эффективность их использования на автомобиле. Организация производства сжатого газа становится целесообразной при приведенных затратах на добычу нефти не ниже 100 руб/т и достаточно низких ценах на добычу и транспорт газа — не выше 14 руб/1000 м (рис. 5.7). В этом случае приведенные затраты на получение сжатого газа составят 72 руб/1000 м , а бензина — 174 руб/т. [c.235]

    На рис. 40 представлен спектр поглощения фенолов, полученный при использовании призмы из хлористого натрия. В области от 700 до 900 см наблюдаются неплоские деформационные колебания связей С—Н бензольного кольца полосы 700—702характерны для MOHO-, 1,3-ди- и 1,3,5-тризамещенных бензолов полоса 751—753 см характеризует моно- и 1,2-замещение в бензольном кольце и т. д. [c.249]

    При понижении концентрации гидролизующего агента возрастает доля реакции замещения. Считается, что такой же, но еще более выраженный эффект вызывает использование менее сильных оснований — КазСОз и МаНСОз. Однако экспериментальные данные говорят в пользу того, что Ма2СОз также может быть с успехом применен для получения окисей.[140]. [c.33]

    Температура плавления политетраметилентерефталамида 436 °С, полиэтилентерефталамида 455°С. Полимеры растворимы в серной и трифторуксусной кислотах. Из растворов полиалкилентерефталамидов в трифторуксусной кислоте можно формовать волокно. Использование для синтеза Ы-замещенных диаминов приводит к получению полиамидов с более высокой температурой плавления. [c.386]

    Можно изучать стереохимические закономерности реакций нуклеофильного замещения с помощью оптически активных алкилгалогенидов, содержащих атом галогена, связанный с хираль-пым центром, например С2Н5СНС1СН3. Полученные при этом данные полностью согласуются с механизмами реакций, предложенными выше на основании кинетических исследований. Если оптически активный хиральный галогенид подвергается 8м1-ре-акции, то получается рацемический продукт. Если нуклеофильное замещение является 5н2-реакцией (что установлено кинетическими исследованиями), то образуются оптически активные продукты, причем при использовании оптически чистого исходного галогенида получаются оптически чистые продукты реакции (т. е. не наблюдается рацемизация). [c.225]


Смотреть страницы где упоминается термин замещение, получение с использованием: [c.328]    [c.367]    [c.367]    [c.478]    [c.143]    [c.356]    [c.147]    [c.252]    [c.220]    [c.45]    [c.35]    [c.146]    [c.202]    [c.40]    [c.80]    [c.457]    [c.8]   
Химия гетероциклических соединений (2004) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

замещение, получение с использованием в синтезах пиримидинового цикла

замещение, получение с использованием пиразолов



© 2025 chem21.info Реклама на сайте