Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электродные процессы с участием адсорбированных веществ

    В большинстве описанных выше случаев рассматривалось ускорение или торможение электрохимических процессов с участием неорганических деполяризаторов [9—32, 34—38, 41—51, 56—62, 70, 72—78, 98—106]. Меньше внимания было уделено влиянию поверхностноактивных веществ на электродные процессы с участием органических деполяризаторов. И в этом случае присутствие адсорбирующихся веществ влияет на число волн и их форму, на потенциалы полуволны и механизм обратимых и, особенно, необратимых процессов. Например, ингибирующее влияние эозина на полярографическое восстановление некоторых хиионов было описано в работе Визнера 18]. Эозин снижает предельный ток обратимой катодной волны хинона, не влияя на потенциал полуволны. При более отрицательных потенциалах наблюдается дополнительная волна, соответствующая заторможенному восстановлению хинона на новерхности электрода, покрытой адсорбировавшимся веществом. При необратимом восстановлении могут иметь место оба вида торможения, как обусловленного образованием иленки, так и изменением %-потеициала (в случае поверхностноактивных веществ ионного типа). Подобные факты описаны в ряде работ 1111—114]. В частности, отмечался значительный эффект тетраалкиламмониевых солей, которые часто применяются в качестве фона при исследоваиии органических деполяризаторов при этом влияние оказывают и концентрация, и размер тетраалкиламмониевых ионов. Так как полярографические данные (особенно значения потенциалов полуволн) часто используются для устаиовле- [c.311]


    В четвертой и пятой главах были рассмотрены электродные процессы в растворах органических соединений, в ходе которых органическое вещество не претерпевает электрохимических превращений, а, адсорбируясь на электроде, влияет на скорость электродного процесса с участием неорганических ионов или молекул. Последующие главы посвящены изложению современных представлений об электродных превращениях самих органических соединений. Такие процессы лежат в основе электросинтеза органических веществ и работы электрохимических генераторов электрической энергии — топливных элементов с органическим горючим. [c.188]

    Как правило, адсорбция веществ, непосредственно не участвующих в электрохимических реакциях, затрудняет протекание этих реакций. Исключением являются лишь случаи, когда адсорбирующееся вещество таким образом изменяет фх-потенциал (потенциал на расстоянии ионного радиуса от поверхности электрода), что увеличивается эффективный скачок потенциала между электродом и разряжающейся частицей, а при участии в электродном процессе ионов, имеющих одноименный с электродом заряд, уменьшается также электростатическое отталкивание между электродом и разряжающейся частицей. [c.83]

    Адсорбция органических ионов наряду с ингибирующими эффектами, зависящими от заполнения поверхности, оказывает влияние на кинетику электродных процессов и через изменение распределения зарядов в двойном электрическом слое. Примеры таких эффектов приведены в работе Кута [9]. В общем случае необходимо учитывать непосредственное действие зарядов адсорбирующихся ионов на реагирующие частицы, вытеснение адсорбирующимися ионами ионов фона, входивших в состав двойного слоя, ненарушенного процессом адсорбции, и заполнение части поверхности адсорбирующимися ионами. Сочетание этих факторов может привести к сложной картине и переходам от торможения реакции к ее ускорению при изменении потенциала или концентрации адсорбирующегося вещества, как это видно, например, на рис. 1 (по данным Николаевой-Федорович [10]). Естественно, что в случае реакций с участием заряженных частиц максимальное торможение [c.303]

    Таким образом, нестационарный характер диффузии, например на капельном электроде, обусловливает зависимость адсорбированного количества реагентов от времени и предопределяет связь шроцессов адсорбции и диффузии, уравнивающих противоположно направленные потоки реагента и продукта на границе раздела. Таким образом, при протекании реакции (А) в нестационарных условиях на капельном ртутном электроде в общем случае реагирующее вещество расходуется тремя различными путями в процессе диффузии в объем раствора в виде продукта К и в процессах адсорбции в виде исходного вещества О и продукта К. Естественно, что появление новых способов расхода вещества изменяет концентрации компонентов реакции у поверхности электрода, и, следовательно, вызывает изменение высоты обратимой полярографической волны или даже ее исчезновение, если концентрация одного из компонентов у поверхности электрода при всех потенциалах равна улю (например, когда продукт реакции, адсорбируясь, вообще не отводится в объем раствора).-Кроме того, участие в электродном процессе специфически аД сорбированных частиц (реагента или продукта) заметно изме- [c.125]


    В этой главе рассмотрены электродные процессы с участием адсорбированных исходных веществ и (или) продуктов реакции, причем учитывается зависимость адсорбции этих веществ от потенциала (см. гл. V). Реагирующие частицы представляют собой либо специфически адсорбирующиеся ионы типа Т1(1), либо органические вещества. Теоретический анализ все еще находится в зачаточном состоянии, хотя он и не требует введения каких-либо новых представлений, кроме рассмотренных в предыдущей главе. Как ябствует из обзоров Фрумкина [1] и Майра-новского ]2, 3], уже сформулированы некоторые основные принципы анализа электродных процессов с участием органических веществ. Простейший случай разряда специфически адсорбированных ионов вряд ли исследовался фундаментально, хотя он относительно подробно рассмотрен в работах, посвященных в первую очередь методике эксперимента (фарадеевский импеданс, фарадеевское выпрямление и т. д.). [c.318]

    Вещества, адсорбирующиеся на поверхности электрода, так же принимают участие в образовании двойного электрического слоя и возникновении электродного потенциала. Особенно ощутимо их влияние при использовании в качестве электродов таких химически неактивных материалов, как углерод, платина, золото и т. п. Эти вещества образуют тела со столь прочной кристаллической penjeTKoft, что растворите.яь (вода) не в состоянии вырвать из них катионы. Потенциал на таких электродах возникает в результате сложного процесса, включающего  [c.236]


Смотреть главы в:

Каталитические и кинетические волны в полярографии -> Электродные процессы с участием адсорбированных веществ




ПОИСК





Смотрите так же термины и статьи:

Процесс электродные

Электродный процесс Процесс электродный



© 2024 chem21.info Реклама на сайте