Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электродный потенциал механизм возникновения

    Электродные потенциалы, возникающие при погружении металлов в водные и неводные растворы, разность потенциалов между двумя соприкасающимися электролитами, мембранные потенциа.г1Ы на мембранах, пропускающих одни ионы легче других,— все это случаи, когда механизм возникновения разности потенциалов на границе двух фаз относится к описанному выше первому типу. [c.165]

    Излагается теория двойного слоя на границе металл—раствор и механизм возникновения скачка потенциала на этой границе. Обсуждается поведение металлических электродов в условиях протекания внешнего тока па основе общей теории кинетики электродных процессов. Детально рассматриваются кинетические закономерности процессов катодного выделения водорода, электрохимического восстановления кислорода и ионизации металлов. Выведены выражения, определяющие коррозионное поведение металлов в условиях их саморастворения для случая идеально однородной поверхности и при ее дифференциации на анодную и катодную зоны. [c.2]


    К концу XIX в. стало окончательно известно, что основная причина электрического тока, производимого гальваническим элементом, — возникновение электродного потенциала, под которым подразумевается разность электростатических потенциалов между электродом и находящимся с ним в контакте раствором. Представления о строении границы между электродом и раствором, а так же о механизме возникновения электродного потенциала были разработаны в трудах Гельмгольца (1879 г.), Л. Ж. Гюи (1910 г.) и О. Штерна (1924 г.). [c.235]

    В предыдущих разделах был выяснен физический смысл электродного потенциала, показана его связь со скачками потенциала на границах раздела фаз, рассмотрены условия возникновения скачка потенциала на границе электрод — электролит (основной составной части электродного потенциала) и разобрана зависимость его величины от состава раствора. При обсуждении механизма возникновения скачка потенциала на границе электрод — электролит было отмечено, что главной причиной его появления является обмен ионами между металлом электрода и раствором. Этот процесс протекает вначале (т. е. в момент создания контакта между металлом и раствором) в неэквивалентных количествах, что приводит к появлению зарядов разного знака по обе стороны границы раздела фаз и к появлению двойного электрического слоя. Однако ни структура последнего, ни распределение зарядов по обе стороны межфазной границы там не рассматривались. Строение двойного электрического слоя не имеет принципиального значения для величины равновесного электродного потенциала, который определяется изменением свободной энергии соответствующей электрохимической реакции. В то же время строение двойного электрического слоя играет важную роль в кинетике электродных процессов, включая и кинетику обмена ионами в равновесных условиях, определяя интенсивность этого обмена (величину тока обмена Г). Теория строения двойного электрического слоя служит поэтому как бы переходным звеном между электродным равновесием и электродной кинетикой. [c.227]

    Возникновение электрохимии как науки относится к рубежу XVni и XIX вв. и связано с работами Л. Гальвани, А. Вольта, В. В. Петрова, Г. Дэви. В 1833 г. М. Фарадеем были открыты законы электролиза — основные законы электрохимии. Теория электролитической диссоциации С. Аррениуса (1887) оказалась весьма плодотворной для развития учения о механизме электродных. процессов и прохождения тока через электролиты. В 1890 г. Нернстом предложена первая теория возникновения электродного потенциала, которая позднее была усовершенствована Л. В. Писаржевским,, Н. А. Изгарышевым, Герни. В XX столетии развивались теория растворов электролитов (работы П. Дебая, Э. Хюккеля, Л. Онза- [c.454]


    Механизм возникновения электродного потенциала на границе раздела металл—раствор до настоящего времени является еще недостаточно выясненным. [c.281]

    Выше уже указывалось, что механизм возникновения электродного потенциала, предложенный Нернстом, хотя и приводит к правильной термодинамически формуле, но не отвечает действительному положению вещей. В последнее время предложен ряд иных попыток объяснения этого механизма. [c.116]

    Описанный механизм возникновения электродного потенциала не является общим. Некоторые металлы (золото, платина) обладают столь прочной кристаллической решеткой, что катионы из нее не могут освободиться. У этих металлов характерный скачок потенциала не возникает. Однако поверхность таких металлов может адсорбировать многие вещества, способные окисляться или восстанавливаться. Поэтому с помощью и этих металлов можно образовать системы, находящиеся в равновесии с растворами. [c.129]

    Этот механизм возникновения электродного потенциала не является общим. Некоторые металлы, например золото или платина, обладают столь прочной решеткой, что катионы из нее не могут освободиться. Поэтому они не имеют характерного скачка потенциала. Однако поверхность таких металлов может адсорбировать многие вещества, способные окисляться или восстанав- [c.175]

    Таким образом, рассматривая превращение химической энергии токообразующих реакций в электрохимических си-ст( мах в электрическую энергию на основе термодинамики, можно не только установить существующую между ними количественную связь, но и рассчитать величины э. д. с. и электродного потенциала. Вместе с тем термодинамический подход не отражает механизма этого превращения, не объясняет природы и причин возникновения э. д. с. и электродного потенциала. [c.65]

    Второй принцип правильно отражает механизм возникновения равновесного скачка потенциала на границе металл — раствор, хотя обмен ионами не исчерпывает всех возможных причин, ответственных за образование скачка потенциала на этой границе. Если между электродом и раствором существует равновесие, то величина электродного потенциала будет мерой изменения свободной энергии F (или термодинамического потенциала G), которая отвечает электродной реакции. При заданной электродной реакции электродный потенциал должен быть определенной и постоянной величиной. Воспользовавшись уравнением для электродного потенциала [c.214]

    Природа потенциала пассивации фп очень важна для понимания механизма возникновения пассивного состояния. По мнению Фет-тера [13, с. 831], наиболее правдоподобно, что потенциал пассивации соответствует потенциалу окисного электрода, определяющемуся суммарной электродной реакцией [c.17]

    Влияние потенциала на КР представляет интерес в нескольких аспектах. В реальных условиях службы алюминиевые сплавы могут контактировать с разнородными металлами, являясь анодом, либо катодом в гальванической ячейке. Наложение анодного потенциала часто применяется в испытании образцов на КР в ускоренных лабораторных испытаниях. Кроме того, эффект действия электродного потенциала часто используется для того, чтобы понять и изучить механизм процесса КР высокопрочных алюминиевых сплавов. И, наконец, катодная защита иногда используется для предотвращения возникновения и роста коррозионных трещин. [c.205]

    Эта теория, не отрицая возможности пленочного торможения анодного процесса при возникновении явления пассивности, утверждает, что основной причиной торможения анодного процесса является более тонкий электрохимический механизм. Предполагается, что адсорбция атомов кислорода (а иногда и других атомов) ведет к такой перестройке скачка электродного потенциала двойного слоя, которая сильно затрудняет протекание анодного процесса растворения металла . [c.16]

    Все ионометрические анализаторы по принципу построения и работы потенциометрической ячейки можно разделить на два основных типа анализаторы для контроля в стационарных условиях (различные варианты автоматических титраторов) и приборы автоматического контроля в гидродинамическом режиме (анализаторы проточно-инжекционного типа). Теоретические основы ионометрии (механизм возникновения электродного потенциала и мембранного транспорта, проблемы селективности и динамические факторы) для стационарных условий эксплуатации электродов разработаны довольно подробно, а теория потенциометрического детектирования в гидродинамических контролируемых условиях стала интенсивно развиваться лишь в последние годы. [c.164]

    Теория Писаржевского — Изгарышева. Механизм возникновения электродного потенциала, основанный на сольватационных явлениях, был сформулирован впервые Л. В. Писаржевским (1912— 1914). Он полагал, что при возникновении электродного потенциала решающее значение имеют следующие два процесса. Первый процесс — ионизация электродного металла с появлением в нем ионов и свободных электронов  [c.219]


    Существует три возможных механизма возникновения междуфазного потенциала. Первый из них связан с различиями в стремлении положительно и отрицательно заряженных частиц переходить из одной фазы в другую. Примером этого является термоэлектронная эмиссия с поверхности нагретого металла в закрытом пространстве, в результате чего создается разность потенциалов между металлом и окружающей средой. Сюда же относится случай возникновения электродного потенциала при погружении металла в водный раствор, или потенциала мембраны, разделяющей два раствора, содержащих ионы, из которых одни более легко проходят через мембрану в сравнении с другими. Во всех этих случаях междуфазная граница разделяет противоположно заряженные части двойного электрического слоя. Электростатические силы, действующие Л1ежду ними, имеют по сравнению с силами притяжения Ван-дер-Ваальса, обусловливающими сцепление, прилипание и растворение, больший радиус действия, поэтому двойные электрические слои имеют диффузное строение и их влияние проявляется во многих случах на расстояниях, больншх по порядку величины, чем средний молекулярный диаметр. [c.274]

    С представлением о двойном электрическом слое мы уже познакомились при рассмотрении механизма возникновения скачка потенциала на электроде. Очевидно, что более подробное исследование строения такого двойного слоя может быть очень полезным при изучении электродных процессов. Кроме того, существуют различные электрохимические явления, в первую очередь так называемые электрокапиллярные и электрокинетические явления, теория которых не может быть успешно построена без отчетливого физического представления о строении двойного слоя на границе твердое тело — раствор электролита. [c.245]

    Стеклянный электрод относится к мембранным электродам. Установлено, что на поверхности раздела между тонкой мембраной из стекла специального состава и раствором возникает разность потенциала, величина которой зависит от активности ионов водорода в растворе (в данном случае механизм возникновения электродного потенциала не является электрохимическим). К преимуществам, которыми обладает стеклянный электрод, относится возможность измерения pH растворов, содержащих сильные окислители и восстановители. [c.45]

    Отклонение потенциала электрода под током от равновесного значения, вызванное замедленностью транспортировки участников электродной реакции, называется обычно концентрационной или диффузионной поляризацией Ае . Механизм возникновения концентрационной поляризации можно понять, если рассмотреть, например, электрохимическую систему, состоящую из двух одинаковых электродов, изготовленных из одного и того же металла М и погруженных в раствор соли этого металла МА, которая диссоциирует на ионы М + и А . Пусть направление тока в системе показано стрелкой  [c.301]

    Существует несколько теорий, объясняющих механизм возникновения скачка потенциала на границе раствор —металл. Наиболее современной является сольватацнонная теория электродного потенциала, основы которой высказаны Л. В. Писаржевским в 1912—1914 гг., затем развиты Н. А. Изгарышевым и дополнены работами Герни (1932). Согласно этой теории скачок потенциала на границе раствор —металл обусловлен двумя процессами 1) диссоциацией атомов металла на ионы и электроны внутри металла 2) сольватацией ионов металла, находящихся на поверхности металла, при соприкосновении его с раствором, содержащим молекулы растворителя Ь. Обе стадии и общая реакция на границе раствор — металл могут быть записаны в следующем виде  [c.470]

    Механизм возникновения электродного потенциала. При контакте металлической пластинки с водой расположенные на поверхности катионы металла гидратируются полярными молекулами воды (рис. 11.13, а). Выделяющаяся при этом энергия гидратации Ет идет на разрыв связи ионов с кристаллической решеткой металла Ем- Вследствие этого расположенные на поверхности катионы переходят в водную фазу. Металлическая пластинка при этом приобретает отрицательный заряд, а близлежащий слой воды — положительный. Таким образом, на границе. раздела металл — вода возникает двойной электрический слой (рис. 11.13,6). [c.469]

    Но исследования в области кинетики электродных реакций, получившие широкое развитие в XX в., должны были опять поставить вопрос о разностях потенциалов на различных поверхностях раздела это привлекло внимание к механизму возникновения скачков потенциала, вследствие чего вопрос о [c.203]

    Но исследования в области кинетики электродных реакции, получившие широкое развитие в XX в., должны были опять поставить вопрос о разностях потенциалов на различных поверхностях раздела это привлекло внимание к механизму возникновения скачков потенциала, вследствие чего вопрос о контактной разности потенциалов снова приобрел большое значение. [c.184]

    В 1857 г. А. Де-ля-Рив сформулировал химическую теорию возникновения э.д.с. элемента. Согласно этой теории источником энерпш в элементе являются реакции окисления — восстановления, протекающие на границе контакта металла с раствором электролита. В дальнейшем химическая теория была развита в трудах В. Нернста и В. Оствальда в конце XIX в., получивших термодинамические уравнения для электродного потенциала и э.д.с. элемента. В XX в. широкое развитие получили исследования кинетики электродных реакций, позволившие сделать важные обобщения о механизме возникновения скачков потенциалов на различных границах раздела фаз и источниках возникновения э.д, с. в гальванических элементах. [c.158]

    Какова классификация индикаторных электродов по механизму возникновения электродного потенциала  [c.272]

    Скорость и механизм протекания химических реакций изучает химическая кинетика. Аналогично скорость и механизм протекания электрохимических реакций изучает электрохимическая кинетика, или кинетика электродных процессов. Особенностью электрохимических реакций служит влияние потенциала на их скорость. Любая электрохимическая реакция протекает минимум в три стадии а) подвод реагентов к электроду, б) собственно электрохимическая реакция, которая может включать в себя и химические реакции, в) отвод продуктов реакции от электрода. Если бы все эти стадии протекали мгновенно, то потенциал электрода при прохождении тока не изменялся бы и соответственно поляризация была бы равна нулю. Однако все три стадии протекают с конечными скоростями, причем одна из них лимитирует всю реакцию и для ее ускорения необходимо изменение потенциала электрода, т. е. поляризация. Следовательно, возникновение поляризации обусловлено замедленностью отдельных стадий электрохимического процесса. Соответственно в зависимости от характера замедленной стадии на электроде возникает или концентрационная, или электрохимическая поляризация..  [c.197]

    В определенных условиях на пассивирующихся металлах наблюдаются периодические колебания потенциала в гальваностатических условиях или колебания тока при Я=соп51. Это объясняется наличием падающей характеристики на поляризационной кривой пассивирующихся металлов, т. е. области с (д1 /дЕ)<С.О, и с закономерным переходом электрода из активного состояния в пассивное и обратно. Существует аналогия между периодическими электродными процессами и явлениями нервной проводимости. Например, активация определенного участка железной проволоки в азотной кислоте приводит к возникновению активационных волн, закон распространения которых вдоль проволоки имеет сходство с законом распространения нервного импульса (модель нервов Оствальда — Лилли). Поэтому периодические процессы при пассивации используются для моделирования механизма действия нервных клеток — нейронов. [c.371]

    Вопросам механизма возникновения электродного потенциала на поверхности палладиевого электрода и его устойчивости посвящены многочисленные работы Шульдинера и сотрудников [547—551]. [c.138]

    Харнед и Оуэн обходят молчанием дискуссию о возможности определения абсолютных потенциалов, отраженную в советской периодической печати они игнорируют также весьма важные работы советских ученых, посвященные механизму возникновения равновесного электродного потенциала и его зависимости от растворителя [Н. А. И з г а-рышев, ЖРФХО, 58, 1175 (1926) Z. Ele troobem., 3, 128 (1928) А. И. Бродский, Z. phys. ehem., 121, 1, 26 (1927)]. См. также обзоры В. А. Плесков, Электродные потенциалы и энергия сольватации ионов. Успехи химии, XVI, вып. 3, 254 (1947) Б. В. Эршлер, Проблема абсолютного потенциала в электрохимии. Успехи химии,, 21, вып. 2, 237 (1952). (Прим. ред.) [c.23]


Смотреть страницы где упоминается термин Электродный потенциал механизм возникновения: [c.23]    [c.854]    [c.237]    [c.362]   
Физическая химия растворов электролитов (1950) -- [ c.23 ]

Физическая химия растворов электролитов (1952) -- [ c.23 ]




ПОИСК





Смотрите так же термины и статьи:

Механизм возникновения ДЭС

Потенциал возникновение

Потенциал электродный потенциал

Электродные потенциалы металлов в электролитах и механизм их возникновения

Электродные потенциалы механизмы

Электродный потенциал

возникновение



© 2025 chem21.info Реклама на сайте