Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фазовые превращения в электрохимических процессах

    ФАЗОВЫЕ ПРЕВРАЩЕНИЯ В ЭЛЕКТРОХИМИЧЕСКИХ ПРОЦЕССАХ [c.332]

    Можно отметить и другие существенные отличия электрохимических фазовых превращений наложение акта переноса заряда на процесс фазообразования, наличие сольватных оболочек и зарядов у частнц до их вхождения в новую фазу и некоторые другие. Естественно поэтому, что простой перенос закономерностей и соотношений, установленных при изучении обычных фазовых превращений, на электрохимические фазовые превращения может приводить к заметным отклонениям от истинной ка этины лроцессов. [c.333]


    Электрическая энергия, вырабатываемая элементом (или цепью элементов), равна полезной работе А суммарного процесса, протекающего в элементе, который мы рассматриваем как термодинамическую систему. Полезная работа Л, процесса максимальна н равна убыли изобарного потенциала системы —AG. Это изменение изобарного потенциала вызвано совокупностью электрохимических реакций на электродах, т. е. суммарной химической реакцией или другими физико-химическими процессами (растворение, выравнивание концентраций, фазовое превращение и др.), протекающими обратимо. В том случае, когда процесс является обратимым, можно, заставляя элемент работать при почти полной компенсации его э.д.с. внешней разностью потенциалов, т. е. заставляя его находиться бесконечно близко к равновесию (этому состоянию и соответствует измеренная величина ), вычислить изменение изобарного потенциала системы AG через измеренную э.д.с..  [c.527]

    В электротермических установках достигаются температуры, обусловливающие разнообразные химические и физические превращения [13]. Подводимая энергия должна обеспечить необходимую температуру процесса и сообщить реагентам требуемую энергию для покрытия расходов на теплоту реакции или фазовые превращения (в отличие от электрохимических процессов, где электроэнергия является необходимым технологическим фактором). [c.80]

    Электродный процесс состоит из ряда стадий. Основными являются стадии диффузии реагентов к поверхности электрода или от нее, переход электронов или ионов через поверхность раздела фаз (электрохимическая стадия, разряд или ионизация), фазовые превращения (выделение пузырьков газа, кристаллизация или разрушение кристаллической решетки), химические реакции, предшествующие электрохимической стадии или следующие за ней. [c.327]

    Общая характеристика процесса (425), 2. Электрохимическое выделение металлов как особый случай фазовых превращений (427), 3. Роль стадии разряда в процессах электрохимического выделения металлов (434), 4. Влияние водорода и пассивационных явлений на процессы катодного выделения металлов (438), 5. Роль заряда поверхности металла в условиях его катодного осаждения (440), 6. Другие возможные причины появления металлического перенапряжения (444). [c.508]

    В физической и коллоидной химии широко используется термодинамический метод, который дает возможность решать ряд важных задач, связанных с превращениями различных видов энергии, которыми сопровождаются химические процессы и фазовые переходы, а также с направлением химических процессов и равновесием. Не менее широко используется статистический метод для решения задач химической кинетики, равновесия и его смещения, кинетики адсорбционных и электрохимических процессов, кинетики процессов, протекающих в дисперсных системах. Ознакомление с указанными основополагающими методами, а также с другими физическими и физикохимическими методами исследования, которые излагаются в настоящем курсе, будет способствовать существенному повышению теоретического уровня знаний будущего учителя. [c.5]


    Если токообразующий процесс провести в обратимых условиях, то гальванический элемент произведет максимальную работу Атах, которая равна убыли изобарного потенциала системы — AG. Изменение изобарного потенциала вызвано совокупностью электрохимических реакций на обоих электродах, т. е. химической реакцией типа (V.1), либо другими физико-химическими процессами (растворение, выравнивание концентраций, фазовое превращение и т. п.), протекающими обратимо. Заставляя элемент работать при почти полной компенсации его э.д.с. наложенной разностью потенциалов, т. е. при состоянии, бесконечно близком к равновесию, можно вычислить изменение изобарного потенциала системы AG через измеренную э. д. с. Действительно, если в химическую реакцию или в другой токообразующий физико-химический процесс вступили z г-экв каждого из участников процесса, то соответствующее количество электричества равно zF, а полезная работа электрического тока, равная убыли изобарного потенциала, определяется выражением [c.139]

    Однако в растворах H 1 из-за высоких значений аси стадия зародышеобразования на -латуни, как правило, преодолевается очень быстро. Поэтому основное значение здесь приобретает кинетическая интерпретация "явления и, в частности, проблема двух конкурирующих процессов — фазового,, превращения и ионизации — обратного осаждения. В кинетике процессов (3.14), очевидно, заключается объяснение разнящимся данным табл. 3.1 для двух концентраций НС1. Но кинетический аппарат обсуждаемых процессов, а равным-образом и теория повышенной термодинамической активности электрохимически положительного компонента к настоящему времени еще не разработаны. Поэтому вопрос об интерпретации роли раствора остается открытым. [c.137]

    В отличие от электролиза с выделением газов, где фазовое превращение хотя и совершается, но существенно не влияет на кинетику электрохимического процесса, при электролитическом выделении металлов эта стадия имеет очень большое, а иногда и решающее значение. Значение этой стадии было отражено В. А. Кистяковским уже в самом названии электрокристаллизация , предложенном им для процессов электрохимического выделения металлов. Процессы электрокристаллизации металлов должны иметь общие черты с другими фазовыми превращениями, в первую очередь, с образованием твердой фазы. [c.427]

    При электрохимическом образовании новой фазы в отличие от обычных фазовых превращений ее энергетический уровень не обязательно должен быть ниже уровня исходной фазы, т. е. процесс может совершаться и в направлении увеличения свободной энергии системы, которая поставляется в форме электрической энергии. Направление перехода в этом случае определяется не столько температурой и давлением, сколько величиной и знаком электродного потенциала. [c.346]

    В отличие от процессов на положительном электроде, процессы на отрицательном электроде МЦЭ отличаются простотой и ясностью. Процесс разряда на данном электроде сопровождается переходом цинка в раствор, т. е. фазовым превращением. Этот переход выражается следующей электрохимической реакцией  [c.45]

    Это последнее обстоятельство особенно важно, так как оно дает новые и весьма эффективные возможности для познания химических процессов на фазовых границах, т. е. тех процессов, которые сейчас признаны чрезвычайно важными практически и сложными с теоретической точки зрения. Сюда входят металлургические, кристаллизационные, электрохимические, коррозионные, каталитические, адсорбционные, фотографические, хемосорбционные и многие другие вопросы, т. е. наиболее значительные проблемы современной химической и металлургической промышленности, стоящей перед необходимостью скорейшего познания природы поверхностных и фазовых превращений в их кинетике и динамике. [c.6]

    Поясним величину Q2 Электролиз проходит при постоянных температуре и давлении. Энтропия веществ, вступающих в электрохимическую реакцию, отличается от энтропии продуктов реакции, так как неравны их теплоемкости и теплоты фазовых превращений. Вследствие этого в процессе образования новых веществ (при постоянной температуре) возникает дополнительный теплообмен между ними и средой, в которой они образовались. Величина теплообмена учитывается показателем Q2, который может иметь и отрицательное и положительное значения. В первом случае при реакции тепло отбирается от электролита, где оно пополняется за счет джоулева тепла. Во втором случае тепло реакции наряду с джоулевым теплом выделяется во внешнюю среду. [c.72]

    Транспорт веществ через мембрану. Проницаемость биомембран. Проницаемость липидных мембран при фазовых превращениях липидов. Проницаемость липидных мембран для воды. Ионная проницаемость липосом. Влияние холестерина на ионную проницаемость биомембран. Методы изучения проницаемости. Движущие силы и механизмы процесса переноса вещества через мембрану. Электрохимический потенциал. Активный и пассивный транспорт. Термодинамические уравнения и критерии процессов пассивного и активного транспорта. Уравнения диффузии, проницаемости, константа проницаемости. [c.283]


    Физическая химия - естественно-научная дисциплина, комплексно изучающая взаимообусловленные превращения вещества и энергии. Наука о коррозии и противокоррозионной защите ( коррозиология) занимает важное место среди разделов физико-химии, использующих электрохимический подход. В процессе коррозии поверхность металла является катализатором окислительно-восстановительных превращений компонентов жидкой и газовой фаз, как это имеет место в гетерогенном катализе, но сама служит участником реакций. Поэтому большую роль играют степень гетерогенности металлической поверхности, ее фазовый состав, ноликристалличность и взаимное влияние структурных составляющих материала. Ситуация осложняется изменением во времени электродного потенциала и поверхностных слоев корродирующего металла и среды. Поэтому научной основой коррозиологии является электрохимия растворяющихся металлических поверхностей как самостоятельный раздел теоретической электрохимии. Основными понятиями являются физико-химическая система, включающая металл и среду, а также физико-химический процесс. Исходя из этого, коррозия трактуется как переход компонентов металлического материала из его собственной системы связей в состояние СВЯЗИ с компонентами среды. Химическое и (или) электрохимическое взаимодействие металла и среды изменяет его свойства и нарушает его функции. Коррозия характеризуется скоростью воображаемого непрерывного движения точки фронта коррозии, то есть границы раздела между металлом и средой, в том числе продуктами коррозии. Техническая скорость коррозии как характеристика коррозионной стойкости -это наибольший показатель коррозии, вероятностью превышения которого нельзя пренебречь. Существуют следующие показатели коррозии массовый ( г/м с), линейный (мм/год), объемный ( м/с), токовый (А/м ), а также время до появления первого очага коррозии, ДОЛЯ поверхности, занятая продуктами коррозии, количество точек или язв на единице поверхности и др. [c.8]

    Скорости электродных процессов рассматриваются обычно с применением тех же приемов, что и скорость химических реакций. Но при этом, однако, нужно иметь в виду сложность протекания большинства электрохимических превращений по сравнению с химическими, а также то, что решающая роль здесь принадлежит плотности тока . Процесс разряда ионов, как известно, происходит на фазовой границе электрод — электролит. Таким образом, электродные реакции являются гетерогенными процессами, кинетика которых определяется многими специфическими затруднениями. Помимо собственно разряда, т. е. перехода ионов из одной фазы (раствора) в другую (газ, металл), процесс обычно включает в себя миграцию, диффузию и конвекцию частиц, совместный разряд ионов примесей, некоторое растворение (коррозию) уже осажденного ранее металла и другие, сопутствующие процессу разряда явления, которые осложняют суммарный эффект. Реальная электрохимическая система не может быть правильно истолкована без учета всех явлений, предшествующих элементарному акту разряда и сопровождающих его. Электродная реакция может быть представлена рядом последовательных стадий, через которые она проходит. Такими стадиями являются  [c.240]

    Отдельными замедленными стадиями процесса, вызывающими перенапряжение, могут быть образование новых или достройка старых фазовых слоев на поверхности электрода (например, кристаллизация), а также химические превращения веществ, предшествующие электрохимической реакции или следующие за ней. Этот вид перенапряжения часто называют фазовым перенапряжением. [c.272]

    В свою очередь, влияние pH и ЕЬ на границу раздела фаз может быть отнесено и к электродным процессам, где может изменяться не только протекание электрохимических реакций, но и протекание фазово-дисперсных превращений. Так, при повышении pH электролита интенсифицируется процесс растворения алюминиевого катода, который протекает, как объясняют некоторые исследователи, по химическому механизму [78]. Концентрация избыточной щелочности на границе раздела катод — электролит приводит к ионизации алюминия без участия электрической составляющей процесса. Аналогично может протекать химическая коррозия анода при снижении pH в прианодной области при потенциалах ниже потенциала ионизации алюминия. [c.88]

    Как уже отмечалось (см. гл. 16), электродные процессы часто связаны с фазовыми превращенпями. В результате появления или исчезновения фаз резко меняются многие важные физико-химические свойства электрохимической системы — электродные потенциалы, электрическое сопротивлсзние и т. д. Эти изменения свойств в ходе фазовых превращений используются в интеграторах, элементах памяти — мемистерах и других хемотронах. Принцип действия интегратора дискретного действия, основанного на электродных фазоЕ.ых превращениях, состоит в том, что металл, предварительно осажденный на одном из электродов, переносят на другой электрод. Реакция в хемотроне сводится к перемещению металла М с электрода I на электрод И  [c.385]

    Электрохимические элементы часто применяют для того, чтобы определить изменение изобарного потенциала химической реакции. Электрическая энергия, вырабатываемая элементом, работающим обратимо, равна полезной работе суммарного процесса, протекающего в элементе, который рассматривается как термодинамическая система. Как известно, полезная работа обратимого процесса является максимальной и равна изменению изобарного потенциала системы AG. Это изменение изобарного потенциала вызвано совокупностью электрохимических реакций на электродах, т. е. суммарной химической реакцией или другими физико-химическими процессами (растворение, выравнивание концентраций, фазовое превращение и т. д.), протекающими обратимо. Если процесс является обратимым, можно заставить элемент работать в условиях почти полной компенсации ЭДС элемента подключением внещ-ней разности потенциалов. При этом можно провести процесс в электрохимическом элементе бесконечно медленно, приближаясь бесконечно близко к состоянию равновесия. Такому процессу и соответствует измеренная величина , зная которую можно вычислить изменение изобарного потенциала системы AG. [c.244]

    В этом разделе, проводится термодинамический анализ начальных этапов псевдоселективной коррозии и селективной коррозии с фазовым превращением, а также оценивается влияние некоторых условий на склонность сплавов по отно-щению к таким видам разрущений. В основу анализа положен экспериментальный факт повыщенной термодинамической активности электрохимически положительного компонента В на поверхности растворяющегося оплава и введенная в связи с этим схема превращений (3.14) [46]. Существенным элементом последней, как уже отмечалось, является двухмерная метастабильная фаза В, предопределяющая все возможные процессы с участием В.,  [c.119]

    Установление преемственности различных механизмов анодного окисления — начального селективного растворения, равномерного растворения, псевдоселективно1го растворения и селективного растворения с фазовым превращением в поверхностном слое. Рассмотрение процессов селективного растворения и электрохимического сплавообразования (катодного внедрения металла в металл) с единых кинетических позиций. 1 [c.194]

    Скорость электродного процесса определяется скоростью наиболее медленной стадии. Наибольшее торможение в стадиях а и б приводит к изменению концентрации реагирующих веществ около электрода и изменению его потенциала. В этом общем случае поляризацию можно назвать концентрационной. Если лимитирующей является только стадия транспортировки, то возникающую в этом случае поляризацию называют диффузионнгам перенапряжением. Еслп наиболее медленно протекает стадия химического превращения, то электродная реакция сопровождается реакционным перенапряжением. Поляризацию, имеющую место в том случае, когда электродный процесс лимитируется скоростью электрохимической реакции (стадия в ), чаще всего называют электрохимическим перенапряжением. Наибольшее торможение в стадии г вызывает фазовое перенапряжение. Поскольку стадии а и в свойственны всем электрохимическим процессам, а б и г — лишь их определенным группам, большее внимание в дальнейшем будет уделено диффузионному и электрохимическому перенапряжению. [c.332]

    В сложном процессе, происходящем на том или ином электроде и включающем стадии поступления вещества на электрод, стадии химических и электрохимических превращений, один из этапов мол< ет оказаться определяющим скорость это будет самый медленный этап. Замедление процесса приводит к тому, что потенциал смещается от равновесного (или стационарного) значения и возникает явление, называемое поляризацией или перенапряжением. Если наиболее медленная стадия представляет собой диффузию, говорят о диффузионном иеренаиряженпи, если причино торможения -суммарного электродного процесса является химическая стадия, речь идет о химическом перенапряжении. Скорость суммарного процесса может определяться также скоростью переноса электронов (электрохимическое перенапряжение) или медленно протекающим процессол образования газовых пузырьков или кристаллических структур (фазовое перенапрял ение). [c.287]


Смотреть страницы где упоминается термин Фазовые превращения в электрохимических процессах: [c.464]    [c.499]    [c.499]    [c.365]    [c.247]    [c.310]    [c.29]    [c.464]    [c.493]   
Смотреть главы в:

Теоретическая электрохимия Издание 3 -> Фазовые превращения в электрохимических процессах




ПОИСК





Смотрите так же термины и статьи:

Превращение фазовое

Процесс фазовых превращений

Процесс электрохимический



© 2025 chem21.info Реклама на сайте