Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие подходы к электростатическим взаимодействиям ионов в растворе

    Другие подходы к электростатическим взаимодействиям ионов в растворе [c.278]

    Взаимодействия между заряженными группами, безусловно, вносят вклад в специфичность фермент-субстратного взаимодействия. Однако, в какой степени электростатическое притяжение в состоянии обеспечить движущую силу межмолекулярных взаимодействий в водном растворе, еще не вполне ясно. Также недостаточно полно разработаны теоретические основы ионных взаимодействий в водных растворах. Существует обширная литература по теории ионных взаимодействий, однако при отсутствии детальных сведений о структуре воды и о природе микроскопических взаимодействий ион-вода и ион-ион в воде существующие теории не дают в общем случае возможности количественно описать их. В этой главе будет рассмотрен эмпирический подход, основанный на описании различных проявлений этих взаимодействий. Будут также сделаны, в основе своей феноменологические, попытки их корреляции и объяснения. Читатель может ознакомиться более подробно е теоретическими и экспериментальными основами проблемы электростатических взаимодействий в воде по другим источникам [1]. [c.274]


    В работе [44 развит новый подход к расчету коэффициентов активности ионов в растворах, основанный на одновременном учете электростатического взаимодействия ионов и их взаимодействия с растворителем, т. е. соЛьватации. Энергетические эффекты, вызываемые электрост1атическим взаимодействием ионов и их сольватацией, рассмотрены независимо друг от друга. Электростатическое взаимодействие ионов учитывают по уравнению второго приближения теории Дебая— Хюккеля влияние сольватации учитывают с помощью электростатической теории сольватации Борна, которая удовлетворяет экспериментальным данным для бесконечно разбавленных растворов в различных растворителях, если в расчетах использовать рентгенографические гидрат-ные радиусы ионов [45]. [c.64]

    Тот же общий подход, основанный на концепции силы анионного поля, был использован Эйзенманом для объяснения сродства различных стеклянных электродов к катионам и распространен затем на ряд химических и биологических систем, включая ионообменные смолы, образование ионных пар и взаимодействие с мембранами [39]. Относительную шкалу энергий взаимодействия различных катионов с анионами переменной силы поля можно построить для галогенных солей эмпирически, сравнивая свободные энергии гидратации со свободными энергиями образования кристаллических галогенидов щелочных металлов. Получающиеся при этом результаты совпадают с зависимостями, представленными на рис. 7, и показывают, что для больших анионов, таких, как иодид, сила взаимодействия уменьшается в ряду Сз" >ВЬ+ >К >Ма в то время как для анионов небольшого размера, таких, как фторид, соответствующий ряд имеет вид >-Na >КЬ+ >Сз . При промежуточных значениях силы поля получают промежуточные ряды, которые согласуются с наблюдаемыми последовательностями специфичност1т стеклянных электродов. Аналогичные сопоставления, основанные на энергиях галогенидов щелочных металлов в виде двухатомного газа, их коэффициентах активности в концентрированном водном растворе и на вычисленных энергиях электростатического взаимодействия как функции ионных радиусов, приводят по существу к тем же результатам. Основность, т. е. энергия взаимодействия с протоном, может рассматриваться как особый случай ионного взаимодействия и лиганды, обладающие высокой основностью, такие, как 0]г1 , также имеют большую силу анионного поля и предпочтительно взаимодействуют с другими небольшими катионами, такими, как и Ка . [c.287]


    Следует отметить, что оба указанных подхода в настоящее время интенсивно развиваются. Появляются новые данные, характери-ззпющие процессы сольватации, состояние ионов и молекул растворителя в растворе. Устанавливается взаимосвязь их со строением и структурой растворов. Наблюдается отказ от чисто электростатических представлений о характере взаимодействия ионов с молекулами растворителя. Развиваются представления о механизме сольватации ионов и т. д. Поскольку многие из этих вопросов будут обсуждаться в других разделах настоящей работы, здесь мы остановимся лишь на современных представлениях о механизме сольватации ионов. [c.112]

    Эта проблема рассматривалась Райсом и Вада [370], Гиббсом и Ди-марцио [371], Хиллом [372], Зиммом [373] и Лифсоном и Зиммом [374]. Согласно их данным, характеристики конформационного перехода для достаточно длинных цепей не зависят от длины цепи, а переход с изменением температуры довольно резок. Однако, прежде чем сравнивать теоретические результаты с экспериментально наблюдаемыми переходами спираль — клубок в растворах ДНК, следует учесть два дополнительных фактора. Так как ДНК состоит из молекул с очень высокой плотностью ионных зарядов, то нарушение двойной спирали приведет к резкому уменьшению электростатической свободной энергии. Это заставляет предполагать, что добавление электролита, уменьшающего взаимодействие ионных зарядов, присоединенных к макромолекуле, приведет к стабилизации спиральной формы. Экспериментальные данные находятся в качественном согласии с этой точкой зрения, и Шильдкраутом и Лифсоном [347] была предложена количественная теория этого эффекта. Другое осложнение возникает вследствие того, что при спаривании оснований А — Т создается более слабая связь, чем при образовании пар оснований Г — Ц, а также вследствие возможного изменения состава оснований вдоль цепи. Указанные изменения должны привести к расширению интервала плавления. Лифсон [375] обсуждал математический подход к рассмотрению этого фактора, но применение такого подхода в настоящее время ограничивается тем, что нельзя точно доказать последовательность остатков оснований в данном образце нуклеиновой кислоты. [c.134]


Смотреть главы в:

Влияние растворителя на скорость и механизм химических реакций -> Другие подходы к электростатическим взаимодействиям ионов в растворе




ПОИСК





Смотрите так же термины и статьи:

Взаимодействия ионные

Ионные взаимодействия в растворах

Ионов взаимодействие

Подход

Раствор ионный



© 2025 chem21.info Реклама на сайте