Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Шкалы кислотности относительная ОШК

    Отсюда вытекает очень важный в теоретическом и практическом отношении вывод, что суждение о нивелирующе-дифференцирующем эффекте растворителя или смеси растворителей по относительной шкале кислотности которую используют иногда исследователи неводных растворов, имеет лишь узкопрактическое значение и носит приближенный характер. [c.414]

    Было разработано несколько методов для сравнения относительных кислотностей и построения шкалы кислотности вопрос этот детально разработан в недавно вышедшей монографии Крама [35]. Эти методы включают измерения равновесий с перераспределением металла [c.43]


    В табл. 7 приведены величины относительной шкалы кислотности некоторых растворителей и изменения кислотного ( 4 " д) и основного ( Д ) пределов этой шкалы по сравнению с шкалой воды. [c.94]

    Константы диссоциации, потенциалы полунейтрализации в неводных средах и относительная шкала кислотности [c.408]

    Значение потенциалов полунейтрализации при выборе растворителя. Потенциалы полунейтрализации могут служить полезными характеристиками при выборе растворителя для данного конкретного случая титрования. С этой целью при титровании слабых кислот (или слабых оснований) сопоставляют относительную шкалу кислотности Ез (см. ниже) избранного растворителя с потенциалом полунейтрализации определяемого электролита. Основный предел относительной шкалы кислотности растворителя определяет возможность титрования в его среде слабых кислот, так как их потенциалы полунейтрализации по мере ослабления кислых свойств электролитов смещаются в основную область относительной шкалы кислотности. Кислотный предел относительной шкалы кислотности растворителя определяет возможность титрования в его среде слабых оснований, так как их потенциалы полунейтрализации по мере ослабления основных свойств электролитов смещаются в кислую область. [c.410]

    Для титрования смесей слабых оснований с р/Св(Н20) 5 необходимо применять растворители, относительная шкала кислотности которых смещена в кислотную область или имеет одинаково большие кислотный и основный пределы относительной шкалы кислотности. [c.411]

    При титровании смесей, содержащих сильные основания, для которых условия титрования определяются большой величиной основного предела относительной шкалы кислотности, применяют растворители с относительной шкалой кислотности, смещенной в основную область. [c.411]

    В случае выбора вместо индивидуального растворителя смеси растворителей или в случае титрования раствора, приготовленного на основе индивидуального растворителя, титрантом, приготовленным на основе других растворителей, необходимо иметь в виду, что при смешивании растворителя с относительно высоким значением рКз (напри мер, метилэтилкетона, диметилсульфоксида, ацетонитрила) с протолитическим растворителем, характеризующимся низким значением р/Сз (например, водой, метиловым спиртом, уксусной кислотой), наблюдается резкое уменьшение абсолютной шкалы кислотности по сравнению со шкалой избранного растворителя. Поэтому состав смешанного растворителя в случае осуществления дифференцированного титрования смеси электролитов должен соответствовать необходимой протяженности абсолютной шкалы кислотности. [c.423]


    Эмпирическая (относительная) шкала кислотности растворителей. Иногда выбор растворителя для данного конкретного случая титрования делается на основе эмпирической (относительной) шкалы кислотности растворителя Д, и потенциалов полунейтрализации электролита 1/, в данном, растворителе. [c.411]

    Относительная шкала кислотности некоторых растворителей [c.411]

    Как следует из табл. 16, низшие спирты и этиленгликоль характеризуются относительно небольшой величиной шкалы кислотности. [c.412]

    Изопропиловый и в особенности трег-бутиловый спирт, пиридин, нитробензол, диметилсульфоксид, ацетонитрил, метилэтилкетон отличаются большой протяженностью относительной шкалы кислотности и, следовательно, обладают высокими дифференцирующими свойствами. [c.412]

    ОТНОСИТЕЛЬНАЯ ШКАЛА КИСЛОТНОСТИ НЕВОДНЫХ РАСТВОРИТЕЛЕЙ [c.55]

    Относительная шкала кислотности неводных растворителей [c.57]

    Нитрометан и диметилформамид характеризуются достаточно большой протяженностью шкалы кислотности шкала диметилформамида в большей своей части расположена в основной, а нитрометана — в кислой области. Пиридин, отличающийся более ярко выраженными основными свойствами по сравнению с диметилформамидом, имеет относительно меньшую шкалу кислотности. [c.412]

    Протяженность и положение эмпирической (относительной) шкалы кислотности может в известной мере служить некоторым практическим критерием выбора в ряде случаев растворителя или смесп растворителей при титровании данных электролитов. [c.413]

    На относительную шкалу кислотности также оказывают заметное влияние посторонние примеси, содержащиеся в исходном растворителе (в том числе и вода), которые в зависимости от их кислотно-основных свойств, положения и протяженности собственных шкал кислотности, отличающихся от щкалы кислотности растворителя среды, люгут оказывать очень сильное влияние, искажающее результаты исследования. Причем для резкого изменения шкалы кислотности исходного растворителя иногда достаточно даже следов посторонних примесей. [c.414]

    Следовательно, при пользовании абсолютной шкалой кислотности отпадает необходимость в эмпирической (относительной) шкале кислотности, не являющейся строгой научной основой для суждения о кислотности или основности растворителя. [c.421]

    Влияние апротонных растворителей. Ранее существовало мнение, что прибавление апротонных растворителей к протолитическим всегда улучшает условия кислотно-основного титрования вследствие уменьшения Кз смешанных растворителей по сравнению с /Сз протолитических растворителей. Однако, как показали исследования, прибавление апротонных растворителей к протолитическим в одних случаях действительно приводит к улучшению, а в других случаях к ухудшению условий кислотно-основного титрования. Так, прибавление бензола к метиловому спирту приводит к увеличению относительной шкалы кислотности по сравнению со шкалой кислотности метилового спирта, а прибавление бензола к ацетонитрилу и ацетону — к уменьшению относительной шкалы кислотности. [c.426]

    Можно сравнить силу соляной и уксусной кислот (или какой-нибудь другой кислоты) относительно других оснований (а не воды), например NH3. Но чтобы установить шкалу кислотности, нужно [c.231]

    Шкала кислотности может быть продолжена в обе стороны в виде функций кислотности, предложенных Гамметом. Основные трудности здесь заключаются в определении относительной активности иона лиония (лиата) по отношению к активности в чистом растворителе, что представляет собой термодинамическое стандартное состояние. Гамметом было предложено решить этот вопрос с помощью индикаторов. [c.44]

    В лаборатории неводных растворов кафедры аналитической химии МХТИ им. Д. И. Менделеева проведены измерения относительной шкалы кислотности тридцати неводных растворителей, используемых в качестве среды для дифференцированного титрования смесей кислот или смесей оснований. К числу исследованных растворителей относятся гликоли, спирты, кетоны, ацетонитрил, нитропроизводные углеводородов, диметилформамид, пиридин и смеси углеводородов со спиртами, кетонами, нитрилами и др. Смешанные растворители содержали отдельные компоненты в соотношениях, которые обычно рекомендуются для использования при титровании многокомпонентных смесей кислот или оснований. [c.55]

    Относительную шкалу кислотности данного растворителя выражают числом милливольт, получаемым путем вычитания потенциала полунейтрализации гидроокиси тетраэтиламмония из потенциала полунейтрализации хлорной кислоты как электролитов, которые занимают крайние положения на шкале кислотности  [c.56]

    Относительная шкала кислотности некоторых растворителей ириве-дена в табл. 16 и рис. 142. [c.412]

    Значения потенциалов полунейтрализации кислот и оснований зависят от многих факторов, поэтому определение относительной шкалы кислотности каждого растворителя проводилось с одной и той же системой титрантов хлорная кислота — гидроокись тетраэтиламмония и одной и той же системой электродов стеклянный— насыщенный каломельный. Идеальным случаем явился бы тот, при котором растворы хлорной кислоты и гидроокиси тетраэтиламмония приготовлялись бы в среде исследуемого растворителя. Однако, если это условие выполнимо почти для всех случаев в отношении хлорной кислоты, то раствор гидроокиси тетраэтиламмония в силу некоторых технических причин или в силу нерастворимости гидроокиси тетраалкиламмония в некоторых растворителях готовился в среде смешанного растворителя бензол—метиловый спирт, находящего наиболее широкое применение при титриметрических определениях в аналитической химии неводных растворов. [c.56]


    Значения потенциалов полунейтрализации, измеренные в разное время, колебались в пределах 10 мв это значение можно принять за точность, с которой измерены относительные шкалы кислотности исследуемых растворителей. Размеры относительной [c.56]

    Мования изменяется незначительно при переходе от одного растворителя к другому, если используют растворители, не обладающие нивелирующим эффектом в отношении исследуе- мых кислот или оснований. На рис. Д.145 приведены шкалы потенциалов, т. е. относительные шкалы кислотности, измеренные с применением стеклянного и каломельного электродов для 12 различных растворителей. Растворители расположены в порядке возрастания их основности кислые растворители группы 3 (трифторуксусная и уксусная кислоты), инертные растворители группы 1 (хлорбензол, ацетон, ацетонитрил), амфотер-1НЫ8 растворители группы 2 (метанол, шо-яропанол), вода и основные растворители группы 4 (диметилформамид, пиридин, бутиламин и этилендиамин). Шкалы потенциалов кислых рас-твор телей характеризуются небольшой протяженностью и сильно сдвинуты в кислую область , так как применяемые кислоты в этой области лишь слабо нивелированы. Инертные [c.343]

    Сопоставление шкал кислотности исследуемых растворителей позволяет сделать некоторые выводы. Спирты характеризуются относительно небольшой величиной шкалы кислотности, которая для ряда исследованных спиртов (метилового, этилового и пропилового) близка к шкале кислотности воды. С увеличением радикала спирта и уменьшением диэлектрической проницаемости шкала кислотности увеличивается, например, при переходе от пропилового к изопропиловому и от бутилового к грег-бутиловому. Гликоли также обладают небольшой шкалой кислотности. [c.57]

    Оптимальные условия кислотно-основного титрования устанавливаются на основании сопоставления потенциалов полуоттитрованности титруемого компонента и относительной шкалы кислотности растворителя. Возможность титрования слабых кислот определяется протяженностью основного предела шкалы, [c.95]

    Протяженностью относительной шкапы кислотности определяют возможность раздельного титрования в данном растворителе смеси протолитов. Дифференцированное титрование смеси кислот осуществимо при использовании растворителей, обладающих значительной протяженностью кислотного предела шкалы кислотности, а смеси оснований - основного предела. В среде подходящих растворителей можно осуществить раздельное титрование двух и более компонентных систем, состоящих из веществ, кис-лотно-основные свойства которых в водных растворах близки. [c.95]

    Чем выше протял<енность относительной шкалы растворителя, тем больше возможность дифференцированного титрования смесей кислот (или оснований). При этом предпочтительно титровать слабые кислоты в тех растворителях, положение шкал кислотности которых соответствует большему основному пределу относительной шкалы кислотности, что обеспечивает четкие скачки титрования. Слабые основания предпоч- [c.410]

    Например, для титрования смеси слабых кислот с р/СнлпСНгО) 5 необходимо остановить свой выбор на растворителе, относительная шкала кислотности которого смещена в основную область или имеет одинаково большие основный и кислотный пределы относительной шкалы кислотности. В случае титрования смесей, содержащих сильные кислоты, для которых условия титрования определяются большой величиной кислотного предела относительной шкалы кислотности, пользуются растворителями с относительной шкалой кислотности, смещенной в кислую область. [c.411]

    В растворах хлорной кислоты, приготовленных даже на основе растворителя, применяемого для исходной титруемой смеси, всегда содержится вода. В процессе кислотно-основного титрования гидроксилсодержащих оснований, а при титровании гидроокисью тетралкиламмония карбоксильных и фенольных групп в качестве продукта нейтрализации также образуется вода, резко изменяющая основной и кислотный пределы относительной шкалы кислотности высокошкальных растворителей. [c.414]

    На величину относительной шкалы кислотности оказывают сильное влияние различные факторы (концентрация, образование нерастворимых соединений, комплексообразование, типы применяемых электродов и т. п.), в зависимости от которых протяженность и положение относительной шкалы кислотности данного растворителя может сильно меняться. Например, в случае выпадения в осадок в процессе потенциометрического титрования образующейся соли, в момент полунейтрализации Снап Ч= Скьап и pH ф рК, что приводит к неверным результатам. [c.414]

    Наиболее глубокие изменения кислотно-основных свойств исходного растворителя наблюдаются при добавлении первых порций другого растворителя, отличающегося от данного растворителя более выраженным кислотным или основным характером. Последующее добавление сорастворителя оказывает меньшее влияние на относительную шкалу кислотности смешанного растворителя. Например, прибавление даже незначительных количеств кислого растворителя к апротонному дипо-лярному или к амфипротному вызывает резкое увеличение кислотных свойств смешанного растворителя, обусловливающее сильное ослабление основных свойств смеси по сравнению с исходным растворителем. Прибавление протофнльного сорастворителя к указанным растворителям приводит к увеличению основных свойств и резкому ослаблению кислотных свойств данного растворителя. [c.429]

    Это уравнение получили путем простого вычитания друг из друга соотношений для рКа каждого из индикаторов, не делая каких-либо предположений о коэффициентах активности. Входящие в уравнение (4.6) концентрации можно измерить, а значение рКа индикатора, являющегося более сильным основанием, известно о величине же коэффициентов активности ничего сказать нельзя. Однако можно оценить величину отношения коэффициентов активности, стоящего в правой части уравнения (4.6). Дело в том, что, хотя отношения Ym/ YHin+ и 71п77н1п + меняются в зависимости от природы среды, характер этого изменения для двух индикаторов практически совпадает. Это означает, что величина (7т/7н1п+)Х X (7нш +/71п ) близка к 1, а ее логарифм, следовательно, практически равен нулю. Было показано, что для данной пары индикаторов концентрационный член не зависит от природы кислоты. Таким образом, можно легко определить величину Р а, которая для рассмотренного случая равна 1,11. Разумеется, можно взять третий индикатор, являющийся еще более слабым основанием, и определить его рКа относительно второго по основности индикатора In. Таким образом, пользуясь различными индикаторами, можно построить шкалу кислотности. Возвратимся к уравнению (4.3), записав его в виде [c.59]

    Зольшой практический интерес представляет определение относительной шкалы кислотности органических растворителей путем титрования в их среде наиболее сильных кислот и оснований, например хлорной кислоты и гидроокиси тетраариламмония. Указанные электролиты обычно используются в качестве наиболее сильных кислых или основных титрантов при определении оснований и кислот в неводных растворах. Такой метод был использован Ван-дер-Хейде и Даменом [149], которые определили относительную шкалу кислотности двенадцати растворителей, обладающих различными кислотно-основными свойствами. [c.55]

    Для определения потенциалов полунейтрализации хлорной кислоты или гидроокиси тетраэтиламмония приготавливали 0,1 М раствор H IO4 в исследуемом растворителе и 0,1 М раствор ( 2H5)4N 0H в смеси бензол — метиловый спирт (5 1). На титрование брали 25 мл 0,1 М раствора кислоты или основания и помещали в 25 мл исследуемого растворителя. Таким образом, кислотный предел относительной шкалы кислотности растворителя определялся как потенциал полунейтрализации приблизительно 0,01М раствора хлорной кислоты в исследуемом растворителе при титровании 0,1 М раствором гидроокиси тетраэтиламмония. В момент полунейтрализации хлорной кислоты исследуемый растворитель содержал менее 5 объемн. % бензольно-метаноловой смеси. Основной предел относительной шкалы кислотности растворителя определялся как потенциал полунейтрализации приблизительно 0,01 М раствора гидроокиси тетраэтиламмония в исследуемом растворителе, содержащем менее 10% бензольно-метаноловой смеси. [c.56]


Смотреть страницы где упоминается термин Шкалы кислотности относительная ОШК : [c.5]    [c.94]    [c.411]    [c.412]    [c.413]    [c.424]    [c.426]    [c.265]    [c.56]    [c.60]   
Аналитическая химия неводных растворов (1982) -- [ c.183 , c.191 ]




ПОИСК





Смотрите так же термины и статьи:

Тау-шкала

Шкала кислотности



© 2024 chem21.info Реклама на сайте