Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аниона поле, сила

    Если кристалло-химические характеристики (тип решетки) в ряду исследуемых солей не изменяются, то прочностные свойства контакта и образца в целом будут зависеть для слоя одного и того же аниона от силы поля катиона. Это подтверждает эксперимент. Так, прочность образцов на основе ЗЮг, затворенных насыщенными растворами сульфатов некоторых металлов, изменяется в ряду А1> Ре> Mg> Со (табл. 22), т. е. коррелируется с возрастанием силы поля катиона. Такая хорошая корреляция наблюдается в том случае, если тип решетки наполнителя и кристаллизующейся соли одинаковы. Именно это имеет место при затворении 5102 растворами сульфатов, которые также имеют структурный тип 2п5. Если же растворами тех же [c.112]


    Анионы, присутствующие в электролите, адсорбируются на поверхности окисла. При этом образуется электростатическое поле, способствующее миграции ионов алюминия через слой окисла к границе раздела окисная пленка — электролит [9]. Величина поля зависит от толщины окисла, валентности и радиуса аниона, ионной силы электролита, количества адсорбированных катионов. [c.9]

    Принимая во внимание то, что перенос электричества в растворе осуществляется одновременным действием и катионов и анионов, рассмотрим долю участия их в этом процессе. Для этого обратимся к скорости движения ионов в растворе под действием электрического поля. Чтобы исключить влияние силы электрического поля на обсуждаемую величину, принято определять ее как путь, пробегаемый ионами за 1 с при падении напряжения в 1 В на 1 м [c.263]

    Для ионов данного вида скорость их движения может быть определена следующим путем. При наложении электрического поля на электролит на ионы действует сила к, направление которой взаимно противоположно для анионов и катионов. Сопротивление действию этой силы пропорционально скорости движения ионов ш. Суммарная сила, действующая на ион, равна разности к—к т, где к — коэффициент пропорциональности. [c.367]

    Изменение эквивалентной электропроводности растворов сильных электролитов с разбавлением связано с изменением межионного взаимодействия. Под влиянием приложенной разности потенциалов равномерность распределения ионов в ионной атмосфере нарушается, центральный ион и противоионы атмосферы начинают смещаться в противоположных направлениях и благодаря возникновению тормозящих сил уменьшается подвижность ионов. В более концентрированных растворах подвижность также уменьшается благодаря более частым столкновениям катионов и анионов, движущихся в электрическом поле в противоположных направлениях. При больших разведениях раствора межионное взаимодействие очень незначительно и ионы движутся с максимальными скоростями, не зависящими от дальнейшего разведения. [c.242]

    Образовавшиеся разноименно заряженные ноны натрия и хлора притягиваются между собой под воздействием электростатического поля. Однако эти ионы не могут образовать единую молекулярную структуру сближение между ними возможно только до известного предела, так как на близких расстояниях начинают проявляться силы отталкивания одноименно заряженных электронных оболочек как иона натрия, так и иона хлора. Поэтому ионы Ка" и СГ располагаются друг от друга на таком расстоянии, при котором силы притяжения и отталкивания как раз взаимно уравновешиваются. Подобные образования называются ионными соединениями. При этом полож-ительно заряженные ионы принято называть катионами, а отрицательно заряженные ионы — анионами. Соответственно с этим сама связь типа Ыа + —С1 может быть названа к а т и о н н о-а н и о н н о й. [c.81]


    Внешнее электрическое поле, параллельное обкладкам, создает по отношению к такому конденсатору напряжение сдвига те (см. гл. XI) — пару сил, действующих на единицу площади обкладок конденсатора вдоль их поверхности (см. рис. 11—2) на обкладку конденсатора, несущую катионы, действует сила, направленная вдоль поля (параллельно вектору напряженности Е), которую в дальнейшем будем считать положительной иа анионную обкладку действует равная по величине, но направленная в обратную сторону (отрицательная) сила —Хе- Напряжение сдвига хе равно [c.175]

    Займемся теперь описанием основных физических свойств простых ионов (одноатомных ионов, имеющих такое же электронное строение, как ближайшие по периодической системе благородные газы, например Li, Na, F или С1 ). Простой ион представляет собой сферическую частицу, обладающую положительным или отрицательным зарядом. Сила взаимодействия иона с окружающими его частицами определяется интенсивностью создаваемого им электрического поля. Эта характеристика ионов называется ионным потенциалом (см. гл. 6), который условно определяется как отношение заряда иона к ионному радиусу. Например, ионный потенциал иона магния Mg равен 2/0,66 = 3,03 (табл. 8.1). Чем выше ионный потенциал, тем сильнее электрическое поле, создаваемое ионом, и, следовательно, тем больше его взаимодействие с соседями. Скажем, Li сильнее взаимодействует с окружающими его анионами, чем s, поскольку радиус s приблизительно в 2,5 раза больше радиуса Li" . [c.130]

    Величина положительного заряда иона металла служит важной характеристикой промотируемых или катализируемых металлами реакций [13]. Для многих процессов эффективность катализа непосредственно коррелирует с изменением заряда катиона. Так, как этот заряд распространяется на весь комплекс, а не только сосредоточен непосредственно на ионе металла, электростатическая природа координированных лигандов играет не менее важную роль, чем заряд иона металла. В некоторых рассмотренных выше реакциях активность многозарядного иона металла падала до нуля при комплексообразовании с анионными лигандами. Кроме того, плотность заряда может оказаться более важным фактором, чем общий заряд. Сила взаимодействия между двумя зарядами или диполями обратно пропорциональна квадрату расстояния между ними. Для достижения максимального. каталитического эффекта ион металла должен быть непосредственно связан с молекулой субстрата, а точнее — с разрываемой связью молекулы. Таким образом, важнейшую роль приобретает стереоспецифическая координация иона металла. В случае ионов переходных металлов на электростатическую природу иона оказывает также влияние экранирование заряда ядра иона металла его -электронами и полем лигандов. [c.233]

    На расстоянии от плоскости Гельмгольца (точка 3 на рис. 8.2) до точки X располагаются неоднородно распределенные катионы и анионы с преобладанием последних. Этот слой раствора, расположенный от фз до точки х, называется диффузионным слоем. За пределами диффузионного слоя ионы электролита распределены равномерно. В водном 0,1М растворе электролита 1 1 (например, К СГ) толщина слоя Гельмгольца составляет 10" см, а диффузионного слоя 10" см. В электрическом поле анода, когда приложенный извне потенциал достигнет определенного значения, называемого напряжением разложения, начинают разряжаться анионы. Механизм их разрядки точно не известен. Электрон, уходящий с аниона на анод должен преодолеть силы связи с остающимся после его удаления радикалом, которые равны энергии сродства радикала к электрону, а также пройти расстояние в пределах области Гельмгольца. Возможно, что электрон с аниона переходит на молекулу растворителя, сольватирующую поверхностные атомы анода. Однако это возможно тогда, когда у молекулы растворителя есть подходящая вакантная - орбиталь  [c.291]

    И силы ых электростатических полей вблизи катионов. Вследствие того что прочность связи катионов в шабазите ниже, чел[ в других цеолитах, значительное число этих катионов оказываются сравнительно слабо связанными с анионами кислорода решетки. [c.586]

    Высокая химическая активность карбокатионов и карбанионов связана прежде всего с силами кулоновского взаимодействия. Точечный заряд, сосредоточенный на атоме углерода, создает электростатическое поле, оказывающее весьма сильное воздействие на все ближайшее окружение такого заряда. Прежде всего, это сильное притяжение к ионам противоположного знака — притяжение, которое может приводить к образованию ковалентной связи. Например, практически невозможно найти условия, которые бы обеспечили существование такой пары ионов, как метил-катион (23) и анион хлора, т.е. каким-либо образом предотвратить их немедленную ассоциацию с образованием ковалентного соединения — метилхлорида (24).  [c.91]


    В последующей работе [197], в которой рассматривается форма кривой зависимости силы тока от напряжения, Левич обсуждает уже и замедленное прохождение анионов через электрическое поле двойного слоя, и замедленный перенос электронов. Подобную же задачу решил Драчка [199]. Полученные при этом соотношения предсказывают второе снижение тока после второго его подъема на опыте, однако, это явление наблюдать не удалось [198]. [c.224]

    Флокулирующее действие неэлектролитов и анионных поли-электролитов проявляется только в том случае, когда молекулы их могут приблизиться на расстояние, достаточное для проявления сил сцепления. По мнению Вейцера [841, это условие соблюдается для суспензий с относительно крупными частицами. Поэтому такие частицы могут быть сфлокулированы анионными ВМФ без добавления минеральных коагулянтов. В случае тонкодисперсных взвесей требуется нредварителыюе снижение устойчивости частиц, поскольку сами анионные ВМФ, имеющие одноименный с частицами заряд, не в состоянии вызвать флокуляции. Эта точка зрения на характер влияния размера частиц в ходе флокуляции подтверждается результатами исследований Гор-ловского и Хейнмана [179, 180]. [c.302]

    Известно, что при переходе от фенолов к карбоновым кислотам, а от них к сульфоорганическим кислотам степень диссоциации их в растворе возрастает. Поэтому мы вправе предположить, что и при переходе от Н-катионитов, характеризующихся наличием только гидроксильных групп в качестве активных центров, к Н-катионитам с карбоксильными и далее с сульфогруппами эффект диссоциации Н-катионитов будет тоже усиливаться. Возрастающая в результате этого относительная свобода катионов водорода может проявиться в форме соответствующего увеличения обменной способности данных Н-катионитов в условиях кислой среды. Этот вывод оправдывается на опыте. Внутримолекулярная взаимосвязь между отдельными кислотными группами, входящими в состав аниона поливалентной кислоты, находит свое отражение в ступенчатом характере ее диссоциации. При этом константа каждой новой ступени диссоциации уменьшается при переходе от этапа к этапу. Это объясняется тем, что на каждом новом этапе диссоциации диспергирующим силам растворителя приходится совершать все большую работу, необходимую для удаления катиона водорода, отщепляющегося в процессе диссоциации новой кислотной группы, из поля сил отрицательных зарядов. Если эти группы не являются тождественными по своей химической природе (как,например, в случае, когда наряду с сульфогруппами в структуру аниона Н-катионита входят еще карбоксильные группы), то естественно ожидать, что переход от последнего этапа диссоциации сильных кислотных групп (сульфо-групп) к первому этапу диссоциации более слабых кислотных групп (карбоксильных) осложнится заметным скачком отношения констант этих двух смежных ступеней диссоциации. Однако ход изменения констант названных ступеней диссоциации зависит не только от химической природы отдельных кислотных групп, но и от расстояния между ними. [c.478]

    Для двухзарядных ионов щелочноземельной группы наблюдается возрастание сродства с увеличением радиуса иона для сульфополистирольных обменников, как и предсказывает теория Айзенмана. При применении теории оказывается, что расположение анионных мест очень важно. Это — направление будущих исследований. Что касается двухзарядных ионов переходных и следующих за переходными металлов, которые сорбируются более сильно, чем можно было бы ожидать из величины их радиуса, то для них, по-видимому, играют важную роль неэлектростатические силы. Состояние сольватации подобных ионов зависит от силы анионного поля обменника (гл. 11). [c.67]

    Для анализа кривых титрования оценим, какую силу анионного поля можно ожидать у ионогенных групп предполагаемых вариантов структуры согласно правилу электростатической валентности Полинга. В SISb, как и в СКК, мостиковый кислород в сурьмянокислородных ионогенных группах [c.72]

    Тот же общий подход, основанный на концепции силы анионного поля, был использован Эйзенманом для объяснения сродства различных стеклянных электродов к катионам и распространен затем на ряд химических и биологических систем, включая ионообменные смолы, образование ионных пар и взаимодействие с мембранами [39]. Относительную шкалу энергий взаимодействия различных катионов с анионами переменной силы поля можно построить для галогенных солей эмпирически, сравнивая свободные энергии гидратации со свободными энергиями образования кристаллических галогенидов щелочных металлов. Получающиеся при этом результаты совпадают с зависимостями, представленными на рис. 7, и показывают, что для больших анионов, таких, как иодид, сила взаимодействия уменьшается в ряду Сз" >ВЬ+ >К >Ма в то время как для анионов небольшого размера, таких, как фторид, соответствующий ряд имеет вид >-Na >КЬ+ >Сз . При промежуточных значениях силы поля получают промежуточные ряды, которые согласуются с наблюдаемыми последовательностями специфичност1т стеклянных электродов. Аналогичные сопоставления, основанные на энергиях галогенидов щелочных металлов в виде двухатомного газа, их коэффициентах активности в концентрированном водном растворе и на вычисленных энергиях электростатического взаимодействия как функции ионных радиусов, приводят по существу к тем же результатам. Основность, т. е. энергия взаимодействия с протоном, может рассматриваться как особый случай ионного взаимодействия и лиганды, обладающие высокой основностью, такие, как 0]г1 , также имеют большую силу анионного поля и предпочтительно взаимодействуют с другими небольшими катионами, такими, как и Ка . [c.287]

    Силы тяготения вообще ненасыщаемы, для них не существует непрозрачных препятствий. В противоположность этому электростатическое силовое поле атомного ядра может быть в значительной степени экранировано слоем электронов, окружающих ядро в нейтральном атоме, но все-таки не сполна. Так, например, нейтральный атом хлора может все-таки притянуть еще один избыточный электрон и превратиться в анион l силы, исходящие от положительно заряженного ядра, как бы частично просвечивают сквозь слои электронов. [c.42]

    Одиночные электролиты. Полностью ионизированный электролит в растворе (например, Na l в воде) состоит из положительно и отрицательно заряженных ионов. При наличии единственного электролита в растворе содержится по одному виду положительных и отрицательных ионов, причем во избежание возникновения очень сильных электрических полей концентрации обоих видов ионов должны быть практически равны во всех точках. Поэтому при диффузии электролита скорость диффузии катионов и анионов должна быть одинакова. Однако собственные коэффициенты диффузии каждого из них могут отличаться (например, в растворе НС1 ион обладает гораздо более высоким собственным коэффициентом диффузии, чем ион С1"). В результате тенденции к более быстрой диффузии одного из ионов возникает небольшое разделение зарядов, приводящее к градиенту потенциала, который замедляет ионы и ускоряет ионы 1 по сравнению со скоростями, с которыми они должны были бы диффундировать. При расчете действительного эффекта необходимо знать собственный коэффициент диффузии каждого иона, а также его подвижность, т. е. скорость миграции при градиенте потенциала единичной силы. Обе эти величины в действительности пропорциональны одна другой, т. е. [c.26]

    Ионы в растворе находятся в состоянии хаотического теплового движения, пока на них не действует сила электрического поля. Под влиянием поля ионы приобретают направленное движение, скорость которого пропорциональна градиенту потенциала (катионы движутся к катоду, анионы — к аноду) Унапр = и-I7//. Коэффициент пропорциональности и называют электрической подвижностью иона она равна скорости движения иона при единичном, градиенте потенциала. [c.183]

    При данной приложенной силе электрического поля электро-лроводность определяется скоростью перенесения заряда ионами. Поэтому она пропорциональна сумме произведений скоростей движения анионов и катионов на их концентрации и на валент-лости. Если учесть, что концентрация ионов пропорциональна. степени диссоциации электролита, то, очевидно, для концентрации Со электролита вида АтВп можно записать [c.370]

    Если две частицы дисперсной фазы сблизить на достаточно короткое расстояние, то далее они будут удерживаться друг около друга силами ван-дер-ваальсова притяжения, которые весьма существенны для частиц большого размера. Это должно привести к их слипанию в случае твердой дисперсной фазы или к слиянию — в случае жидкой и газообразной. Если бы это происходило при каждой встрече частиц, то расслаивание эмульсий и коагуляция суспензий происходили бы за очень короткое время. Однако это случается далеко не всегда в силу наличия у частиц дисперсной фазы электрического заряда. Например, золь Ре(ОН)з проявляет основные свойства и присоединяет протоны, в результате чего коллоидная частица Ре(ОН)з приобретает положительный заряд. Частицы коллоидного золота адсорбируют на своей поверхности многие анионы и заряжаются отрицательно. Заряд на поверхности коллоидных частиц скомпенсирован ионами противоположного знака (противоионами), которые под действием электростатического поля этих частиц концентрируются вблизи поверхности, образуя ионную атмосферу (см. 13.2). Заряженную поверхность вместе с примыкающей к ней ионной атмосферой называют двойным электрическим слоем. Поскольку все одинаковые по своей химической природе коллоидные частицы имеют одноименный заряд, между их ионными атмосферами действуют силы электростатического отталкивания. Это препятствует их сближению до расстояний, на которых ван-дер-ваальсово притяжение пересиливает электростатическое отталкивание и создаются условия, благоприятные для слипания частиц. [c.321]

    Подобно тому, как в теории протолитического равновесия сопоставлялась сила анионов-оснований, считая, по Усановичу, каждый катион кислотой, можно составить и для этого типа кислот табель о рангах. Так, в ряду катионов щелочных металлов от лития к цезию сила кислот падает, так как с увеличением ионного радиуса уменьшается напряженность электростатического поля, создаваемого ионом, и, следовательно, ослабляется его стремление вступать во взаимодействие. Из двух катионов с одинаковым строением внешней электронной оболочки, например, и a +, последний более сильная кислота, чем ион калия, так как благодаря большему заряду иона, он будет обладать большей энергией взаимодействия с одними и теми же кислотами. [c.17]

    В отличие от метода конфигурационного взаимодействия метод самосогласованного поля рассчитан на построение приближенной функции лишь основного состояния. При дополнительных условиях, например, при заданной мультиплетности состояния, он нацелен на построение однодетерминантной или одноконфигурационной функции основного состояния среди состояний этой мультиплетности. Все другие получающиеся решения, если они не отвечают вырожденной задаче, в общем случае не имеют сколько-нибудь определенного физического смысла. Эти решения, как правило, не ортогональны решению, низшему по энергии, и не могут непосредственно быть использованы для построения функций возбужденных состояний. Конечно, бывают и исключения, но это такие детали, на которых пока останавливаться не стоит. Так называемые виртуальные орбитали, получаемые как решения одноэлектронного уравнения Fф = еф сверх тех орбиталей, которые входят в детерминант (одноконфигурационную функцию) основного состояния, отвечают даже физически иной задаче в этом уравнении фокиан содержит оператор вида > где суммирование ведется по всем занятым орбиталям, в силу чего для виртуальных орбиталей он отвечает задаче о поведении электрона в поле ядер и усредненном поле всех N электронов молекулы (в этой сумме остается N слагаемых вместо N - 1 слагаемого, как то имеет место для любой из занятьгх орбиталей). Следовательно, виртуальные орбитали должны отвечать скорее задаче об анионе, а не о [c.309]

    ДЛЯ галогенидов щелочных металлов. Отметим, что энергия решетки возрастает по мере уменьшения размеров катиона или аниона. Например, она систематически возрастает в рядах Lil, LiBr, Li l, LiF или sF, RbF, KF, NaF, LiF. В первом из этих рядов происходит последовательное уменьшение размеров галогенид-иона (при постоянном ионном заряде), а во втором ряду — уменьшение размеров иона щелочного металла. Наблюдаемые изменения энергии решетки на самом деле обусловливаются не только электростатическим притяжением ионов, которое характеризуется ионным потенциалом. Определенную роль играют и такие факторы, как изменение сил отталкивания между ионами с зарядами одного знака, а также степень деформации ионов под действием окружающего их электрического поля. Оба эти фактора в свою очередь в какой-то мере зависят от взаимного расположения ионов в кристалле и от их ионного потенциала (подробнее об этом см. гл. 10). Данные факторы проявляются не столь заметно при сопоставлении энергий решетки различных галогенидов щелочных металлов, но приобретают важное значение при сравнении свойств веществ, состоящих из ионов с более высоким ионным потенциалом или имеющих не такое электронное строение, как у атомов благородных газов. В рассматриваемом случае налицо преобладающая роль ионного потенциала. [c.131]

    В кристаллических веществах другого типа действуют большие силы кулоновского (электрического) взаимодействия между образующими их частицами. Твердые вещества этого типа называются ионными кристаллами. В качестве примера можно привести многие известные соли, скажем Na l или КС1. Поскольку электрическое поле, создаваемое каждым ионом, обладает ненаправленным характером, в ионных кристаллах положительные ионы со всех сторон окружены отрицательными ионами и, наоборот, отрицательные ионы окружены положительными ионами. В большинстве простых солей вокруг каждого иона располагается по шесть или восемь ионов с зарядом противоположного знака, причем это число зависит от относительных размеров катиона и аниона. Как правило, если отношение этих радиусов, Гк ,тион/ тион, находится в пределах от 0,73 до 0,41, ионный кристалл имеет такую же структуру, как Na l, с числом ближайших соседей каждого иона, равным шести (рис. 10.14). При больших значениях отношения ионных радиусов у каждого иона оказывается восемь ближайших соседей с зарядами противоположного знака, как это показано для кристаллической структуры s l на рис. 10.15. [c.177]

    Еще эффективнее может концентрироваться проба, если поле после гидродинамического ввода прикладывается на короткое время в противоположном направлении. При условии, что ионы, которые нужно определять, перемещаются в направлении против ЭОП, капилляр может заполняться раствором пробы почти до детектора (гидродинамический ввод), и раствор пробы может удаляться из капилляра исключительно за счет инверсии полярности. Одновременно ионы, перемещающиеся против ЭОП, могут концентрироваться в пограничном слое между раствором пробы и разделительным буфером. Прежде, чем этот пограничный слой достигнет входа в капилляр, с помощью переполюсовки источника напряжения может начинаться собственно разделение. Точный момент времени для переполюсовки можно установить, следя за изменением тока, так как ток в процессе концентрирования постоянно увеличивается. Причина этого в том, что зона раствора пробы (с высоким сопротивлением) удаляется из капилляра. Когда сила тока достигает примерно 90% от максимального значения (капилляр заполнен только разделительным буфером), то источник напряжения может переполюсовываться и молекулы пробы, удерживаемые в узкой зоне вблизи входа капилляра, разделяются. На рис. 24 показаны отдельные стадии этого способа ввода, который в целом называется "стэкинг" с обращением поля. Из-за большого вводимого объема ионы пробы концентрируются примерно тысячекратно. Недостатком метода является то, что при слишком поздней переполюсовке часть ионов пробы выходит из капилляра, и что могут анализироваться только либо анионы, либо катионы. [c.33]

    При малой толщине окисной пленки напряженность поля значительна, но по мере утолщения пленки она ослабевает и при толщине порядка нескольких десятков нанометров становится исчезающе малой. В этих условиях в качестве основной движущей силы диффузии остается градиент концентращ1й, обусловленный изменением соотнощения металла и окислителя в окисной пленке. На границе металл — окисел в пленке следует ожидать максимально возможную в рассматриваемых условиях концентрацию катионов при некотором недостатке анионов, а на границе окисел - газ следует ожидать максимально возможную концентрацию анионов при некотором недостатке (по отнощению к внутренним слоям) катионов. Наряду с этим предполагается наличие в окисле дефектов, которые, по современным представлениям, являются необходимым условием для диффузии [5 - 9]. Эта модель, в совокупности с представлением об окисной пленке как о полупроводнике, является основой теории Вагнера - Хауффе, описывающей рост толстых окисных пленок по закону квадратичной параболы [10]. [c.12]

    Катион-модификаторы, разрушаюш,ие кремне- и алюмокисло-родные анионы, способствуют, как правило, уменьшению вязкости. Наиболее сильно понижают вязкость катионы щелочны.х металлов, в меньшей степени двухразрядные катионы. Обычно чем больше сила поля катиона, тем больше он сказывается на понижении вязкости, хотя имеется и немало отклонений от этого правила. [c.113]

    Электродиализ (см, раздел 18) основан на переносе ионов растворенного вещества через мембрану под действием электрического поля. Движущей силой этого процесса является градиент электрического потенциала, В процессе электродиализа используются катионообменные и анионообменные мембраны, более проницаемые для катионов или анионов соответственно, В многокамерном электродиализаторе чередуется большое число таких мембран, расположенных между двумя электродами. Электрический ток переносит катионы из исходного раствора в концентрированный раствор через катионообменную мембрану, расположенную со стороны катода, В этом растворе катионы задерживаются анионообменной мембраной. Направление движения анионов является противоположным. Общий результат процесса заключается в увеличении концентрации ионов в чередующргхся камерах и одно- [c.33]

    В структуре разбавленных растворов электролитов, являющихся моделями природных пресных вод, различают три слоя воды (рис. 2,44). При этом у каждого положительно или отрицательно гидратирующегося иона образуются слой А первичной гидратации, в котором молекулы воды (HjO),, связаны с ионом силами ион-дипольного взаимодействия (катионы) или за счет водородных связей (анионы) слой В — в нем структура воды (HjOjp+i находится под ориентирующим влиянием кулоновского поля, [c.145]


Смотреть страницы где упоминается термин Аниона поле, сила: [c.153]    [c.62]    [c.109]    [c.494]    [c.427]    [c.256]    [c.191]    [c.160]    [c.89]    [c.100]    [c.46]    [c.212]    [c.291]    [c.727]    [c.89]   
Катализ в химии и энзимологии (1972) -- [ c.287 ]




ПОИСК







© 2025 chem21.info Реклама на сайте