Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение элементов подгруппы алюминия

    Обратим внимание на одну замечательную особенность периодической системы элементов Менделеева (см. табл. 2). В современных таблицах аналоги располагаются в вертикальных столбцах, тогда как в системе Менделеева 1869—1906 гг. все легкие элементы сдвинуты относительно друг друга и по отношению к тяжелым аналогам. Сдвиг элементов нечетных рядов вправо, а четных влево (см. табл. 2) привел к расположению их в шахматном порядке, к симметрии таблицы в диагональных направлениях и к разделению элементов на две подгруппы. Тот же прием привел к зигзагообразному расположению аналогов первых трех рядов. В табл. 2 водород смещен вправо от лития, литий — влево от натрия, а натрий — вправо от калия, рубидия и цезия. Бериллий сдвинут влево от магния, а магний — вправо по отношению к кальцию, стронцию, барию и радию. Бор, углерод, азот, кислород, фтор сдвинуты влево относительно алюминия, кремния, фосфора, серы, хлора и их тяжелых аналогов. И даже в группе инертных газов гелий смещен влево от неона, а неон — вправо от аргона и его тяжелых аналогов. Эти зигзагообразные смещения легких элементов сделаны Менделеевым не только по соображениям придания системе элементов стройной и гармоничной формы. Менделеев подчеркивал особый характер легких элементов. В восьмом издании Основ химии [2] на стр. 460 он пишет Элементы, обладающие наименьшими атомными весами, хотя имеют общие свойства групп, но при этом много особых, самостоятельных свойств. Так, фтор, как мы видели, отличается многим от других галоидов, литий — от щелочных металлов и т. д. Эти легчайшие элементы можно назвать типическими. Сюда должно относить сверх водорода (ряд первый) второй и третий ряды второй начинается с Не и третий с Ке и N3, а кончаются они Р и С1. . . Далее Менделеев, касаясь-смещения магния, пишет Так, например, Zn, С(1 и Hg. . . представляют ближайшие аналоги магния . Следовательно, основанием для смещений всех легких элементов из вертикальных столбцов служили вполне определенные отличия их химических и физических свойств от свойств тя-н елых аналогов. Эти зигзаги представляют в первоначальном виде идею о немонотонном изменении свойств в столбцах элементов-аналогов, развитую в дальнейшем Е. В. Бироном [17], который открыл в 1915 г. явление вторичной периодичности , подметив периодическое изменение теплот образования соединений элементами-аналогами главных групп. [c.25]


    РАЗДЕЛЕНИЕ ЭЛЕМЕНТОВ ПОДГРУППЫ АЛЮМИНИЯ [c.244]

    Электролиз с ртутным катодом. Особенно удобным и важным методом разделения металлов является электроосаждение на ртутном катоде . Перенапряжение водорода на ртути очень велико (1,2 в), поэтому любой металл, потенциал выделения которого меньше указанного значения, может осаждаться на поверхности ртути металлы же, требующие отрицательных потенциалов, более чем —1,2 в, будут оставаться в растворе. Не осаждаются щелочные и щелочноземельные металлы, алюминий, металлы подгрупп скандия, титана и ванадия, а также вольфрам и уран. Метод с успехом применяют для удаления железа и подобных ему металлов из растворов алюминиевых сплавов, после чего основной элемент определяют весовым или другим способом. Он также широко используется при очистке урановых растворов . [c.110]

    Весьма детальная классификация элементов по кристаллическим структурам была дана в 1942—1960 гг. Г. Б. Бокием [160]. Он различает шесть основных типов структур элементов 1) гексагональную плотную упаковку, 2) кубическую плотную, 3) кубическую объемноцентрированную упаковку (металлические структуры), 4) молекулярные структуры, 5) ковалентные структуры с координационным числом K—S—N, 6) прочие структуры. Г. Б. Бокий отметил принадлежность водорода по кристаллохимическим признакам к группе галогенов, разделение элементов III группы на две подгруппы (бора—таллия и скандия—актиния), указал на своеобразие структур марганца, урана, индия, цинка, кадмия и ртути, объяснил повышенные значения da для структур цинка и кадмия эллипсоидальной формой атомов и высказал предположение, что алюминий, а- и р-таллий, свинец и индий в металлическом состоянии не отщепляют всех валентных электронов [160]. В этом плане кристаллохимия элементов была рассмотрена и в ряде других работ [32, 111] и др. [c.190]

    Комплексные соединения элементов подгруппы галлия широко используются для их количественного определения, разделения и очи-стки. Так, из растворов (6—8 М) галогеноводородных кислот элементы подгруппы галлия легко экстрагируются органическими растворителями в виде Н[М Т4], чем пользуются при их отделении от сопутствующих элементов, например алюминия, который в этих условиях образует неэкстрагирующиеся анионные комплексы состава [А1Г (Н20)б-п] Комплексные соединения с купфероном, 8-оксихинолином, этиленди-аминтетраацетатом используются для количественного определения элементов, а с ацетилацетоном и его производными — для получения окисных пленок, проведения транспортных реакций, а также для очистки и разделения смесей элементов подгруппы галлия. [c.179]


    Аналогия химического поведения и физических свойств отмечается не только для элементов одной главной или одной побочной подгруппы, а в некоторой степени это имеет место и для элемейтов, принадлежащих к одной группе периодической системы. Более всего это проявляется в III и IV группах периодической системы. Там это настолько сильно выражено, что долгое время нельзя было окончательно решить, какие элементы являются более близкими аналогами бора и алюминия, а также углерода и кремния таким образом, оставалось неясным, какие из них должны быть помещены в главные подгруппы, а какие — в побочные. На основании предложенного выше определения для главной подгруппы удается получить такое же разделение элементов по главным и побочным подгруппам, какое получают, основываясь на строении атома (см. стр. 41). Подобное разделение является наиболее целесообразным и обпщм. [c.26]

    Ф. М. Шемякин показал, что, кроме сходства по подгруппам и рядам, нужно учитывать сходство и по диагональному направлению, от левого верхнего угла таблицы к правому нижнему ее углу, например ионообменные разделения в ряду ионов, элементов бериллия, алюминия, титана, ниобия, вольфрама. Диагональное направление определяет сходство лития с магнием, бериллия с алюминием, бора с кремнием, титана с ниоби-ем и вольфрамом или молибдена с рением в их химико-аналити- ческих свойствах. По диагонали проходит граница металлов № металлоидов, граница амфотерности бериллий — бор, алюминий — кремний, германий — мыщьяк или сурьма — теллур, полоний— астатин. А. Е. Ферсман объяснил это сходство в хими,- [c.106]

    Скандий был предсказан Д. И. Менделеевым (экабор), открыт в 1879 г. Нильсоном в процессе разделения РЗЭ эрбиевой подгруппы, полученных из скандинавского гадолинита, В природе известен один стабильный изотоп Искусственные радиоактивные его изотопы [1, 2] имеют небольшой период полураспада и являются и Р "-излучателями. Скандий первый элемент, у которого достраивается не внешний уровень, а предшествующий внутренний подуровень. Его электронная конфигурация [Аг] Это аналог алюминия, но проявляет более основные свойства. [c.3]

    В годы второй мировой войны работы по хроматографическому разделению смесей редкоземельных элементов проводились в Германии и особенно интенсивно в США в связи с проблелюй выделения чистых радиоактивных изотопов, получаемых в результате деления ядер урана. В литературе немецкие исследования этого периода представлены двумя работами Линднера [79, 80], первая из которых посвящена хроматографическому разделению смесей радиоактивных изотопов свинца и стронция и отделению радия от бария, а вторая — разделению смеси элементов иттриевой подгруппы, облученных предварительно нейтронами, полученными при бомбардировке дейтронами литиевой мишени. Опыты со смесями редкоземельных элементов проводилина окиси алюминия, которую промывали кислотой. В каждом опыте получали четыре фракции две — из фильтрата и две — из верхней и нижней частей колонки. Автором было установлено возрастание сорбируемости элементов с увеличением их порядкового номера, что объясняется соответствующим уменьшением радиуса ионов. [c.167]


Смотреть главы в:

Экстракционная хроматография -> Разделение элементов подгруппы алюминия




ПОИСК





Смотрите так же термины и статьи:

Алюминий—элемент



© 2025 chem21.info Реклама на сайте