Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие разделяемой системы с мембраной

    Эффективность фракционирования ультрафильтрацией снижается при воздействии ряда факторов, например, таких как взаимодействие макромолекул, образование пограничного слоя повышенной концентрации на границе раздела между мембраной и питающим раствором и взаимодействие системы мембрана — растворенное вещество. Появление пограничного слоя обусловлено концентрационной поляризацией, которая происходит в результате значительной потери растворителя из раствора на границе его раздела с мембраной. Вследствие взаимодействий системы растворенное вещество—растворенное вещество и растворенное вещество — мембрана этот пограничный слой иногда необратим и образует слой геля, который видоизменяет поверхность исходной мембраны. В таких случаях действующая УФ-мембрана фактически состоит из последовательно соединенных исходной мембраны и слоя геля. [c.65]


    Пористые мембраны представляют гетерогенные системы с весьма развитой поверхностью раздела твердое тело (матрица)— газ. Известно, что состояние газа или жидкости вблизи поверхности раздела фаз отличается от свойств той же среды в большом объеме. Особенности поведения веществ в этой области принято называть поверхностными явлениями. Термодинамически поверхностные явления трактуются как проявление особого вида взаимодействия системы, которое характеризуется уменьшением свободной энергии Гиббса при переходе вещества из объемной в поверхностную фазу. Убыль свободной энергии Гиббса пропорциональна площади поверхности и количественно определяется работой, которую необходимо затратить на образование поверхности или перемещения массы из объема в поверхностный слой в изотермическом процессе. Следовательно, речь идет о существовании потенциала поверхностных сил. [c.42]

    Условия равновесия ионит — раствор определяются равенством химических потенциалов электролитов и растворителя по обе стороны полупроницаемой мембраны [111]. Эта система уравнений связи между химическими потенциалами рассмотрена в разделе 1.2 как один из вариантов записи условий равновесия в предположении отсутствия специфических взаимодействий между противоионами и фиксированными ионами. Там же показано, что она эквивалентна системе (V. 9), в которой первое уравнение после перехода к концентрациям и коэффициентам активности может быть преобразовано в выражение, определяющее коэффициент равновесия. [c.122]

    В этом разделе более детально описаны основные принципы формирования мембраны с помощью метода инверсии фаз. Все процессы инверсии фаз основаны на одних и тех же термодинамических принципах, поскольку точкой отсчета во всех этих случаях является термодинамическая стабильность растворов, в которых происходит разделение на компоненты. Особое внимание будет уделено процессу осаждения путем погружения в нерастворитель. Основной чертой такого процесса является то, что в нем участвуют три компонента полимер, растворитель и нерастворитель, причем растворитель и нерастворитель должны быть взаимно совместимы. Вообще говоря, большинство промышленно производимых мембран, приготовленных методом инверсии фаз, получены из многокомпонентных смесей, но для понимания основных принципов метода будут рассмотрены только трехкомпонентные системы. В начале дано введение в термодинамику растворов полимеров, причем полезным качественным приближением для описания растворимости полимеров, или взаимодействия полимер — пенетрант, является теория параметра растворимости. Более количественное описание дает теория Флори — Хаггинса. Известны и другие более сложные теории, но здесь они не будут рассмотрены. [c.110]


    В экспериментах по воссозданию планарных липидных мембран могут быть использованы как моно-, так и бислои. Монослой формируют на поверхности раздела вода — воздух. Каждый липид имеет характерную, зависящую от его структуры площадь поверхности, а это означает, что вместо прямого измерения поверхности монослоя для определения тенденции липида распространяться по ней, т. е. оказывать так называемое поверхностное давление, можно использовать торзионные весы. Прибор для такого рода измерений называется ванной Ленгмюра. С его помощью можно количественно следить за воссозданием липид-белковой системы, ибо, когда белок встраивается в монослой, поверхностное давление меняется в соответствии с пространственными требованиями его молекулы. Так, если какой-то белок входит в субфазу под монослоем, то изменение поверхностного давления в ванне Ленгмюра зарегистрирует его включение в мембрану. Путем изменения состава липидного монослоя можно определить, какой липид взаимодействует со специфическим белком. Например, этим методом было найдено, что ацетилхолиновый рецептор постсинаптической мембраны взаимодействует лучше с холестерином, чем с фосфолипидами [20]. Такая информация, следовательно, имеет не только теоретический интерес она может оказаться необходимой для успешного воС создания мембраны. [c.86]

    Попятно, что ira каждом уровне дробления решающим могут оказаться данные разных разделов биологии или (и) психологии. Например, для построения феноменологических моделей сенсорных систем основу представляли сведения из психофизики. Для более подробных моделей, включающих представления о характере iij)e-образований в составляющих систему нейронных ядрах, необходимы результаты электрофизиологических исследований этих ядер. Но чтобы приблизиться к пониманию механиз.мов передачи и переработки информации — носителями которой являются потоки нервных импульсов,— требуются модельные представления на нейронном уровне, т. е. на уровне иггформационных преобразований Б нервных клетках и организации взаимодействия между ними. Наиболее детальная. модель предполагает понимание по крайней мере характера н])еобразований в тех элементах нейрона, которые по сои-ременпым воззрения.м определяют переработку информации,— это мембрана клетки, сома, дендриты, синапсы. Здесь уже нужны данные не только физиологии и морфологии нервной клетки, но и результаты моделирования но существу молекулярных процессов в мембране. Примечательно, что здесь начинается и разделение сфер исследования. Для тех кто моделирует информационную сторону процессов в нервной системе, приближается момент, когда достаточно ограничиться феноменологическими сведениями о более мелких элементах (посчитать их за черные ящики ). Вместе с тем здесь начинается сфера интересов биохимии и молекулярной биологии, данные которых как бы поддерживают снизу весь этот комплекс информационных исследований нервных процессов, помогая установить свойство наиболее ма.чых элементов, влияющих на специфику оперативной переработки нервной информации. [c.10]

    Одним из главных факторов в процессе осаждения путем погружения является выбор системы растворитель/нерастворитель. Для приготовления мембраны путем инверсии фаз полимер должен быть растворим. Хотя для выбранного полимера могут подходить различные растворители, используемые растворитель и нерастворитель должны быть полностью смешиваемы. Чаще всего в качестве нерастворителя служит вода, но также могут быть использованы и другие нерастворители. Некоторые растворители для АЦ и ПСФ, смешиваемые с водой, представлены в табл. П1-6. Растворимость этих органических растворителей в воде будет рассмотрена далее. Как описано в предыдущем разделе, смешиваемость компонентов всех типов определяется свободной энергией смешения AGm = АЯщ — TASm (уравнение П1-1). Для идеальных растворов АНщ = О и ASm = A-S m,ideal - Однако смесь органических растворителей и воды сильно отклоняется от идеального поведения, и большинство органических смесей не проявляют свойств идеальных растворов, поскольку в них возможны дипольные взаимодействия и водородные связи. Только очень слабо взаимодействующие растворители, например алканы, могут быть рассматриваться как идеальные. Для неидеальных систем свободная энергия смешения на один моль смеси может быть представлена следующим образом  [c.140]

    Использование желчных солей, таких, как холат и дезокси-холат, при низких температурах позволяет разрушать липид-липидные взаимодействия в мембранах и в то же время сохранять интактные белок-белковые комплексы. С помощью этих детергентов дыхательную цепь митохондрий можно разделить на четыре комплекса, названные комплексами I, II, III и IV (цитохром с-оксидаза). При этом сохраняется электронтранспортная активность каждого комплекса, а после встраивания этих комплексов в искусственные бислойные мембраны восстанавливается их протонпереносящая активность. С помощью фракционирования и реконструкции комплексов достигается ряд целей 1) снижается сложность системы по сравнению с интактными митохондриями 2) становится возможным определение минимального числа компонентов, необходимых для работы каждого участка цепи 3) в период проверки хемиосмотической теории [c.115]



Смотреть страницы где упоминается термин Взаимодействие разделяемой системы с мембраной: [c.553]    [c.60]    [c.160]   
Смотреть главы в:

Новый справочник химика и технолога Процессы и аппараты Ч2 -> Взаимодействие разделяемой системы с мембраной

Баромембранные процессы -> Взаимодействие разделяемой системы с мембраной




ПОИСК





Смотрите так же термины и статьи:

Взаимодействия в системе

Взаимодействующие системы



© 2025 chem21.info Реклама на сайте