Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимическая защита от коррозии оборудования в химической промышленности

    В книге освещены проблемы и современное состояние борьбы с коррозией аппаратуры и машин в химической, нефтеперерабатывающей и смежных с ними отраслей промышленности. Описаны исследование коррозии металлов в условиях теплопередачи применение электросварных труб в нефтеперерабатывающей и нефтехимической промышленностях катодное наводороживание и коррозия титана и его а-сплавов в различных электролитах влияние водорода на длительную прочность сталей влияние пластической деформации на водородную стойкость сталей о методике определения температурных границ применения конструкционных сталей в гидрогенизационном оборудовании влияние водорода при высоких температурах и давлениях на механические свойства металлов защитные свойства плакирующего слоя стали 0X13 на листах стали 20К против водородной коррозии влияние твердости стали ЭИ579 на ее коррозионную стойкость в водородосодержащих средах влияние легирующих элементов на водородную коррозию стали влияние толщины стенки и напряжений на скорость водородной коррозии стали протекторная защита теплообменной аппаратуры охлаждаемой сырой морской водой коррозия углеродистой стали в уксусной кислоте и электрохимический способ ее защиты торможение коррозии стали Х18Н9 в соляной кислоте добавками пенореагента ингибиторы коррозии для разбавленных кислот ингибиторы коррозии стали в системе углеводороды—сероводород—кислые водные растворы сероводородная коррозия стали в среде углеводород—электролит и защитное действие органических ингибиторов коррозии ингибиторы коррозии в среде углеводороды—слабая соляная кислота коррозионно-стойкие стали повышенной прочности для химического машиностроения тепло- и коррозионно-стойкие стали для печных труб и коммуникационных нефтеперерабатывающих заводов коррозия в нитрат-нитритном расплаве при 500° С коррозионная стойкость сталей с пониженным содержанием никеля в химически активных средах коррозия нержавеющих сталей в процессе получения уксусной кислоты окислением фракции 40—80° С, выделенной из нефти коррозионные и электро-химические свойства нержавеющих сталей в растворах уксусной кислоты коррозия металлов в производстве синтетических жирных кислот газовое борирование металлов, сталей и сплавов для получения коррозионно- и эрозионно-стойких покрытий применение антикоррозионных металлизированных покрытий в нефтеперерабатывающей промышленности коррозия и защита стальных соединений в крупнопанельных зданиях. [c.2]


    Во всех промышленно развитых странах все большее значение приобретает проблема защиты металла от коррозии. Среди различных способов, используемых для ее решения, особое место занимают системы электрохимической (катодной) защиты, широко применяемые для предотвращения разрушения металлических сооружений, эксплуатируемых в условиях природных вод и грунтов. Область применения катодной защиты весьма широка она охватывает подземные водопроводы, газо-, нефте- и продуктопроводы и металлические трубопроводы других назначений, проложенные в земле, подземные кабели связи, силовые кабели с металлической оболочкой и броней, кабели, проложенные в трубах, заполненных сжатым газом или маслом, различные резервуары — хранилища и цистерны, речные и морские суда, портовое оборудование, установки питьевой воды и различные аппараты химической промышленности, нуждающиеся во внутренней защите. [c.13]

    Рассмотрена номенклатура металлического оборудования из коррозионно-стойких сталей и титана, неметаллических материалов. Большое внимание уделено технологии защиты стальных и железобетонных аппаратов футеровочными и полимерными покрытиями. Перспективные методы электрохимической защиты рассмотрены главным образом на примерах анодной защиты, нашедшей в химической промышленности наибольшее применение. В меньшей степени рассмотрены вопросы использования ингибиторов коррозии. Этот вид защиты неразрывно связан с особенностями технологии соответствующих производств, требованиями к химическому составу продукции н рабочих сред, поэтому он будет рассматриваться в книгах, посвященных конкретным отраслям химической промышленности. В эту книгу включены лишь справочные данные о таких общераспространенных процессах, как ингибирование при травлении металлов и ингибиторная защита оборудования в периоды консервации и транспортировки. Описанию способов защиты оборудования предпослана глава о методах коррозионных испытаний металлических и неметаллических материалов и изделий. [c.4]

    В последние годы потенциостатические методы находят все возрастающее применение и в промышленных условиях, главным образом при электрохимической защите оборудования в конструкций. Уже сейчас в химической промышленности разных стран работают десятки аппаратов, снабженных системой электрохимической защиты от коррозии с регулированием потенциала металла. Проводится большое число опытно-промышлен-ных работ по развитию и внедрению потенциостатической техники, в частности автоматических станций противокоррозионной защиты в химической и других отраслях промышленности (защита химических аппаратов и емкостей, трубопроводов, гидростанций, судов и др.). Появляются новые области применения потенциостатических методов — предотвращение образования осадков на стенках ванн для химического нанесения металлов и сплавов, электросинтез органических соединений и др. [c.6]


    За последнее время этот вид электрохимической защиты металлического оборудования от коррозии получил заметное распространение в химической промышленности (рис. 223), не только [c.322]

    Основной особенностью водородного разрушения в результате низкотемпературной (электрохимической) коррозии нефтегазопромыслового, нефтеперерабатываюш,его и химического оборудования является трудность прогнозирования времени и места разрушения. Изложенные выше материалы показывают отсутствие на сегодняшний день какого-либо одного абсолютно надежного способа защиты от водородного расслоения и растрескивания, который можно было бы с достаточной экономичностью широко применять в промышленности. С другой стороны, техника располагает значительным числом разнообразных способов торможения водородного разрушения на основе выбора материалов повышенной стойкости, нанесения покрытий, применения ингибиторов, нейтрализации агрессивных сред, рационализации технологических процессов и конструктивных форм оборудования. В связи с этим наиболее рационально использовать комбинированные (комплексные) пути защиты 01 водородного разрушения, т. е. одновременно применять несколько разнохарактерных методов защиты, взаимно дополняющих и усиливающих эффективность действия друг друга. Примеры такого комплексного применения различных мероприятий приведены ниже при описании отдельных способов защиты от низкотемпературного водородного разрушения стали. [c.94]

    ЭЛЕКТРОХИМИЧЕСКАЯ ЗАЩИТА ОТ КОРРОЗИИ ОБОРУДОВАНИЯ В ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ [c.203]

    Электрохимическая катодная защита наиболее широко применяется при борьбе с морской, а также с грунтовой коррозией металлов. В последние годы катодная защита находит широкое применение и для предохранения от коррозии теплосилового оборудования и заводской аппаратуры на предприятиях химической промышленности. [c.299]

    Принципы конструрфования металлического оборудования в коррозионностойком исполнении в электрохимических производствах / И. В. Рискин// Защита от коррозии в химической промышленности Сб. науч. тр. М. НИИТЭХИМ, 1987. С. 46-52. [c.145]

    До настоящего времени наиболее широко применяется в промышленности анодное электроосаждение, хотя начинает интенсивно внедряться катодное электроосаждение [4], начало промышленного применения которого было положено в 1971 г. [5]. При катодном электроосаждении исключается электрохимическое растворение окрашиваемого металла и окисление связующего, обеспечивается лучшая щелочестойкость покрытия. Минимальное содержание в пленке карбоксильных групп обусловливает лучшую водостойкость покрытий по сравнению с анодными пленками. В электроосажденной пленке на основе аммониевых связующих содержится большое число атомов азота, равномерно распределенных по цепи макромолекул. Благодаря этому ингибируется процесс коррозии металла под лакокрасочной пленкой. Все это обеспечивает значительно лучшие защитные свойства покрытий. Достоинством катодного электроосаждения является также получение прозрачных пленок на изделиях из разнородных металлов, при этом к предварительной химической подготовке поверхности не предъявляются жесткие требования. Недостатком катодного осаждения является более высокая стоимость оборудования из-за особых требований к конструкционным материалам в отношении их коррозионной защиты. [c.9]


Смотреть страницы где упоминается термин Электрохимическая защита от коррозии оборудования в химической промышленности: [c.11]    [c.11]    [c.150]   
Смотреть главы в:

Потенциостатические методы в коррозионных исследованиях и электрохимической защите -> Электрохимическая защита от коррозии оборудования в химической промышленности




ПОИСК





Смотрите так же термины и статьи:

Защита оборудования

Защита от коррозии

Защита химическая

Коррозия химическая

Коррозия химическое и электрохимическое

Коррозия электрохимическая

Оборудование химическое

Электрохимическая защита

Электрохимическая защита от коррозии от коррозии



© 2025 chem21.info Реклама на сайте