Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимические методы коррозионных испытаний

    Электрохимические методы коррозионных испытаний [c.30]

    Рассмотрена номенклатура металлического оборудования из коррозионно-стойких сталей и титана, неметаллических материалов. Большое внимание уделено технологии защиты стальных и железобетонных аппаратов футеровочными и полимерными покрытиями. Перспективные методы электрохимической защиты рассмотрены главным образом на примерах анодной защиты, нашедшей в химической промышленности наибольшее применение. В меньшей степени рассмотрены вопросы использования ингибиторов коррозии. Этот вид защиты неразрывно связан с особенностями технологии соответствующих производств, требованиями к химическому составу продукции н рабочих сред, поэтому он будет рассматриваться в книгах, посвященных конкретным отраслям химической промышленности. В эту книгу включены лишь справочные данные о таких общераспространенных процессах, как ингибирование при травлении металлов и ингибиторная защита оборудования в периоды консервации и транспортировки. Описанию способов защиты оборудования предпослана глава о методах коррозионных испытаний металлических и неметаллических материалов и изделий. [c.4]


    Испытание качества покрытий также включает в себя и определение их антикоррозионных свойств. Основные методы коррозионных испытаний были рассмотрены в гл. П1. Другие методы (механические испытания, снятие электрических и оптических характеристик, электрохимические измерения, испытания с применением радиоактивных изотопов, определение состава коррозионных слоев при помощи электронной дифракции или электронного микрозонда) применяются в особых случаях. Оценка качества покрытий в значительной мере зависит от правильности метода исследования, а также от продолжительности испытаний. [c.233]

    При ускоренных методах коррозионных испытаний целесообразно использовать возможность ускорения электрохимических реакций, обусловливающих коррозионный процесс, агрессивными компонентами или деполяризаторами. При испытании металлов при полном погружении с целью увеличения скорости катодного процесса можно вводить перекись водорода или иные деполяризаторы. При атмосферных ускоренных испытаниях можно ускорить процесс введением в атмосферу агрессивных компонентов. При выборе одного из них необходимо учитывать, содержится ли тот или иной компонент в атмосфере. Поэтому при ускоренных испытаниях изделий, предназначенных для эксплуатации в атмосфере морского воздуха, желательно в камеру ввести частички хлористого натрия, распределив их в атмосфере в виде сухого аэрозоля или тумана. Для имитации условий промышленной атмосферы желательно в конденсационную камеру или аппарат переменного погружения ввести сернистый газ. Скорость коррозионного процесса можно при этом увеличить в десятки, а иногда и в сотни раз. [c.11]

    ЭЛЕКТРОХИМИЧЕСКИЕ И ЭЛЕКТРИЧЕСКИЕ МЕТОДЫ КОРРОЗИОННЫХ ИСПЫТАНИЙ МЕТАЛЛОВ [c.119]

    По величине измеряемого электродного потенциала можно судить и о характере коррозионного процесса и установить, таким образом, какая из электрохимических реакций определяет скорость коррозии. Это очень важно при выборе (обязательно с учетом контролирующего фактора) ускоренного метода коррозионных испытаний. [c.126]

    Исходя из электрохимической теории межкристаллитной коррозии нержавеющих сталей, представляется возможным обосновать ускоренные методы коррозионных испытаний. Если коррозия обусловлена электрохимической неоднородностью поверхности, то любой реактив, пригодный для быстрого определения коррозии, должен действовать на границы зерен, обедненные хромом, ответственные за межкристаллитную коррозию, оставляя в пассивном состоянии сами зерна. Если это условие не будет соблюдаться, то начнут корродировать зерна и межкристаллитная коррозия перейдет в общую. [c.246]


    Книга является вторым изданием учебника для техникумов, переработанным и дополненным (первое вышло в 1977 г.). Состоит из двух частей. В первой части рассмотрены теория и основные виды коррозии, коррозия важнейших металлов и сплавов, а также оборудования электрохимических цехов, методы коррозионных испытаний и заш,иты от коррозии, коррозионно-стойкие металлы и неметаллические материалы. Вторая часть книги посвящена гальваностегии — приведена классификация покрытий, изложены основы электроосаждения металлов, описаны условия и закономерности нанесения покрытий из цветных металлов и контроль качества покрытий. Приведены также сведения об оборудовании гальванических цехов, очистке сточных вод и технике безопасности. [c.2]

    Как правило, в основе коррозионных испытаний металла котлов в стендовых условиях при повышенных температурах и давлениях также лежат электрохимические методы. Однако подобного род коррозионные испытания имеют ряд отличий от описанных в 5.1. [c.145]

    Такие вопросы теории и механизма электрохимической коррозии, как равновесные и стационарные электродные потенциалы, электрохимическая гетерогенность поверхности металла, кинетика катодного и анодного процессов, работа коррозионного элемента, пассивность и потенциостатический метод исследований, рассмотрены в работах № 5—13. Особенности коррозии металлов в различных условиях службы, например кислотостойкость, грунтовая коррозия металлов, межкристаллитная и точечная коррозия сталей, коррозия сварных соединений, коррозионное растрескивание и усталость, а также некоторые стандартные методы коррозионных испытаний иллюстрируются работами № 14—22. [c.64]

    Во Всесоюзном научно-исследовательском институте железнодорожного транспорта влияние трещин на коррозионную стойкость железобетонных конструкций изучали в лабораторных условиях электрохимическими методами, путем испытания в гидростате и коррозионной камере, на стендах и на эксплуатируемых конструкциях. [c.53]

    Коррозионные испытания металлов в напряженном состоянии. Как известно, коррозия металла в напряженном состоянии носит специфический характер и отличается как от чисто механического, так и от чисто электрохимического его разрушения. Характерным видом разрушения металла при постоянных растягивающих напряжениях является коррозионное растрескивание металла. Разработано много методов испытаний на устойчивость [c.347]

    В условиях обводнения протекают процессы электрохимической коррозии. Коррозионную агрессивность топлив оценивают стандартным методом ГОСТ 18597—73, включенным в комплекс методов квалификационных испытаний. Измеряют убыль массы металлической пластинки, находящейся в топливе, в условиях, обеспечивающих конденсацию воды. В двухстенную испытательную колбу 3 (рис. 24) наливают 60 мл топлива. На площадку 6, температура которой поддерживается 30+1,0°С для бензинов и реактивных топлив и 50+1 °С для дизельных топлив, помещают металлическую пластинку 5, колбу закрывают пришлифованной пробкой У с гидравлическим затвором, который обеспечивает проведение исследований при нормальном давлении. Внутри колбы имеется специальный желобок 4, куда наливают дистиллированную воду, испаряющуюся в ходе испытаний и создающую внутри испытательной колбы 100%-ную влажность. Продолжительность испытаний 5 ч. Критерием оценки служит убыль массы металлической пластинки, выраженная в г/м . Сходимость определений составля- [c.78]

    Объемный показатель обычно измеряется в см /(см .ч ). Электрохимические методы коррозионных испытаний основаны на определении скорости коррозии в токовых единицах, получаемых при снятии анодных и катодных пол изационных кривых. Если коррозия протекает по электрохимическому механизму, то. зная уравнение реакции, скорость коррозии, выраженную в единицах плотности тока (обычно мА/см ) при помощи закона Фарадея можно перевести в массовый показатель скорости коррозии. [c.7]

    На рис. 17 представлены графики зависимости скорости коррозии сварочной проволоки Св-08А от степени пластической деформации е. Как видно из графика, в этой зависимости отмечается максимум. Подобные зависимости получены в работе [3] коррозионными испытаниями малоуглеродистой стали электрохимическими методами и дано их теоретическое объяснение. Механохимический эффект наиболее сильно проявляется на стадии деформационного упрочнения, когда имеется интенсивное образование дислокационных скоплений в металле, приводящих к росту термодинамического и химического потенциала. Чем выше степень деформации, тем больше скорость коррозии металла. Однако в области деформаций, соответствующих стадии динамиче- [c.48]

    Склонность стали к коррозионному растрескиванию может быть оценена по электрохимическим характеристикам напряженного и ненапряженного металла, а также путем физических исследований и прямых коррозионных испытаний. К физическим методам контроля относятся акустический и ультразвуковой методы, рентгеноструктурный анализ, оценка электросопротивления материала, магнитометрические методы. Общим во всех этих методах является то, что в их основу положен поиск поверхностной трещины, причина возникновения которой может быть как следствием коррози- [c.118]


    Поэтому рассматриваемые в настоящей монографии теоретические вопросы, относящиеся к механизму протекания электрохимических реакций в тонких слоях электролитов, конвективной диффузии, адсорбции поверхностно-активных веществ, влиянию составляющих сплавов и атмосферы, а также роли омического сопротивления и поляризации представляют не только самостоятельный научный интерес, но и имеют принципиальное значение для разработки противокоррозионной защиты и методов ускоренных коррозионных испытаний металлов. [c.5]

    Наиболее значительные успехи в разработке электрохимических методов испытаний на устойчивость к межкристаллитной коррозии достигнуты применительно к испытаниям коррозионно-стойких сталей и сплавов на железоникелевой основе [48,49). Поэто-му их рассмотрение будет проведено на примере этих материалов. [c.58]

    Фундаментальные электрохимические исследования МКК сделали возможным создание новых ускоренных методов определения склонности нержавеющих сталей к этому виду локальной коррозии [48—52] и позволили сформулировать основные принципы разработки растворов для ускоренных коррозионных испытаний сталей на МКК [50, 51, 53]. [c.59]

    Выбор метода испытаний зависит от цели исследования. Так, для изучения механизма коррозионных процессов широко применяют электрохимические методы. Для исследований, носящих прикладной характер (выбор наиболее коррозионно-стойкого металла для данных условий эксплуатации, исследование поведения металла в определенных условиях эксплуатации, выбор способа защиты), часто применяют испытания в специальных аппаратах и установках, В последних методах испытаний, которые обязательно проводят как сравнительные, основными показателями коррозии являются внешний вид образцов, время появления первого коррозионного очага, число коррозионных центров, глубинный, весовой, объемный, механический и другие показатели. [c.144]

    Ускоренные атмосферные испытания. Лабораторные методы исследования атмосферной коррозии были разработаны раньше многих других лабораторных методов коррозионных испытаний и продолжают непрерывно совершенствоваться. Это можно объяснить, с одной стороны, тем, что в практике атмосферной коррозии подвергается около 80% металлических конструкций и доля коррозионных потерь при атмосферной коррозии превышает половину общих потерь [52], а с другой, тем, что механизм атмосферной коррозии является сложным и изучен далеко не полностью. Несмотря на кажущуюся простоту, воспроизведение в лаборатории условий атмосферной коррозии встречает определенные трудности, которые в значительной мере связаны с тем, что атмосферной стойкости вообще не существует, ибо одни и те же металлы в разных местах корродируют по-разному, так, например, коррозионная стойкость железа может изменяться в зависимости от атмосферы примерно в сто раз [3]. Большое значение имеет влажность воздуха, количество осадков, характер и количество загрязнений, температура и другие факторы. В зависимости от соотношения этих факторов естественную атмосферу делят на сельскую, городскую, индустриальную, сельскую морскую, городскую морскую, морскую, тропическую и тропическую морскую. Подробная характеристика этих типов атмосфер приводится в работе [5]. В соответствии с механизмом процесса атмосферная коррозия классифицируется [52, 53] на мокрую (относительная влажность воздуха около 100%), влажную (относительная влажность ниже 10%) и сухую (полное отсутствие влаги на поверхности металла). В двух первых случаях коррозия шротекает в соответствии с законами электрохимической, а в третьем—в соответствии с законами химической кинетики. Часто их трудно разграничить. В этой связи одним из первых условий воспроизведения в лаборатории атмосферной коррозии является создание на поверхности металла тонкой пленки влаги, имеющей постоянную или переменную толщину. Последнее, по-видимому, более точно отвечает практике. Такие условия в лаборатории достигаются с помощью влажных камер, приборов переменного погружения или солевых камер. Наиболее простая влажная камера — обычный эксикатор, на дно которого налита вода (рис. 13). [c.64]

    Выбор метода испытания зависит от цели исследования. Так, для изучения механизма коррозионных процессов широко применяют электрохимические методы. Для исследований носящих прикладной характер (вы- [c.182]

    Коррозионные испытания предварительно активированных электрохимическими методами титановых образцов убедительно подтверждают, что скорости растворения титана резко возрастают в присутствии даже весьма больших концентраций ионов Т1(1У) (см. табл. 2). [c.52]

    Большая часть электрохимических методов исследования и методов ускоренных коррозионных испытаний основана на выявлении энергетических соотношений и конкурентной активности продуктов в системе металл — нефтепродукт — ПАВ — электролит — воздух (см. табл. 5). Для оценки поверхностных свойств нефтепродуктов и маслорастворимых ПАВ в этой системе мы использовали следующие методы [14—17, 51, 60—62]  [c.36]

    Коррозионная стойкость хромоникелевых и высокохрсялистых сталей, паянных свинцовым припоем, была исследована по ГОСТу 6032-58, а также электрохимическими методами. Все испытанные образцы не имели признаков МКК. В то же время в сварных образцах, например из стали Х27, отчетливо видны резко выраженные разрушения по границам зерен, что свидетельствует о протекании МКК. По мере удаления от шва характер разрушения ослабляется и за зоной термического влияния МКК в основнсяа металле полностью отсутствует. 27 [c.27]

    Ускоренный электрохимический метод испытания на точечную коррозию, предложенный Бреннертом и усовершенствованный Г. В. Акимовым и Г. Б. Кларк, состоит в том, что образец коррозионностойкой стали поляризуют анодно от внешнего источника постоянного тока и одновременно измеряют его электродный потенциал (рис. 355). При достижении некоторого значения потенциала (потенциала пробивания) защитная пленка на образце разрушается в одной или нескольких точках, вследствие чего значение электродного потенциала образца уменьшается. Наблюдается хорошее соответствие результатов сравнительных коррозионных испытаний хромистых и хромоникелевых сталей на точечную коррозию с данными, полученными методом определения потенциала пробивания. [c.463]

    Электрохимические методы. Большинство процессов коррозни металлов имеет электрохимическую природу, поэтому электрохимические методы играют большую роль в технике коррозионных испытаний. Обычно принято измерять потенциалы и снимать катодные и анодные поляризационные кривые. Метод измерения электродных потенциалов описан в гл. II. [c.342]

    На рис. 2.23 представлена зависимость скорости коррозионного проникновения Vg сварочной проволоки св-08 от степени пластической деформации 8. В этой зависимости отмечается максимум. Механохимический эффект наиболее сильно проявляется на стадии деформационного упрочнения, когда имеет место интенсивное образование дислокационных скоплений в металле, приводян1ее к росту термодинамического и химического потенциала. Чем больше степень деформации, тем больше скорость коррозионного проникновения металла. Однако, в области деформации, соответствующей стадии динамического возврата, этот эффект заметно снижается. Это связано с затуханием процессов деформационного упрочнения металла. Подобные зависимости отмечаются при коррозионных испытаниях малоуглеродистой стали электрохимическими методами [50]. [c.128]

    К е 1 е г Н., Применение электрохимических методов в коррозионных испытаниях, Metalloberfla he, 19, № 2, 39 (1965). [c.96]

    В отличие от трибохимических процессов, интенсифицируемых температурой и характерных для режима испытаний на машине СМЦ-2, выделение водорода при электрохимическом катодном коррозионном процессе деполяризации протекает в условиях относительно холодного контакта при легких режимах трения, характерных для метода ТЭМ-2В, и определяется в основном содержанием в масле воды. [c.55]

    Общепринятыми методами оценки защитных свойств смазочных материалов в условиях развития электрохимической коррозии являются испытания в коррозионных камерах, имитирующих хранение и эксплуатацию металлических изделий в разных условиях. Например, термовлагокамера Г-4 имитирует тропические условия, камера агрессивной среды (диоксид серы) имитирует воздух промышленных районов существуют также камеры солевого тумана, искусственной погоды, озонирования и др. Оценку коррозии проводят визуально по состоянию поверхности пластин и изменения выражают в процентах коррозионного поражения пластин. Такая оценка коррозии несовершенна. [c.320]

    Если стоит задача выявления МКК при коррозионном обследовании действующего оборудования, то для выявления межкри-сталлитных поражений применяют ультразвуковые, рентгеновские, радиоизотопные и другие приборы неразрушающего контроля. При необходимости проводят вырезку и металлографический контроль образцов. На практике, однако, чаще всего возникают задачи иного рода, требующие достаточно быстрой оценки качества отдельных партий металла перед их использованием для изготовления аппаратуры. Обычно это бывает связано с выявлением возможных отклонений от установленной технологии изготовле1 ия и сварки сплавов. Сюда же примыкают задачи обнаружения неблагоприятных структурных изменений металла образцов или аппаратов в нормальных эксплуатационных условиях или при их нарушениях (перегревы и т. п.). Во всех этих случаях металл может приобрести повышенную склонность к МКК. Для выявления склонности к МКК применяют две группы методов химические и электрохимические. Химические методы широко распространены в мировой практике, изучены в течение многих десятков лет и стандартизованы. Электрохимические методы, позволяющие резко ускорить испытания, основаны на снятии электрохимических характеристик при анодной поляризации металла. Они к настоящему времени прошли опытную проверку и, безусловно, являются перспективными. [c.50]

    Микроскопическое исследование. Дальнейшим развитием ви- зуального метода исследования коррозии металлов является микроскопическое исследование. Так же как и в предыдущих случаях, микроскопическое исследование можно проводить после и во время проведения коррозионных испытаний. Микроскопическое исследование позволяет прежде всего подробно изучать избирательный и локальный характер коррозии межкристаллитную коррозию, межкристаллитное и внутрикристаллитное коррозионное растрескивание и корроз1ионную усталость, структурную и экстрагивную коррозию. Микроскопическое наблюдение коррозионных процессов во времени позволяет получить ценные данные о начале и характере развития коррозионных разрушений. Для наблюдения коррозионного процесса под микроскопом [1] поверхность образца — в виде шлифа или подготовленную другим способом — помещают в ванночку так, чтобы рабочая поверхность была повернута к объективу микроскопа. После чего ее наводят на фокус, наливают заранее отмеренное количество коррозионной среды и начинают наблюдеиие. Микроскопические наблюдения можно производить одновременно с электрохимическими, о чем более подробно сказано ниже в гл.ЛУ- [c.17]

    Успехи, достигнутые при исследовании коррозионно-электрохимического поведения пассивирующихся металлов и сплавов, позволили сформулировать основные принципы подбора растворов для ускоренных коррозионных испытаний сталей на склонность к МКК [150, 156] и сделать определенные практические рекомендации [150, 157, 158 . Так, с помощью потенциостатических исследований в работе [157] были определены условия ускоренного (48 вместо 144 ч по методу В) коррозионного испытания стали 0Х23Н28МЗДЗТ на склонность к МКК. [c.55]

    Склонность к точечной коррозии определяют электрохимическим методом, определяя потенциал пробивания, и для сравнения — по времени появления первого очага коррозии и количеству прокорродировавших участков после коррозионного испытания в растворе РеС1з. [c.125]

    Ввиду того что коррозия имеет электрохимическую природу, неудивительно, что измерение электрических свойств поверхности раздела металл — раствор (электрический двойной слой) широко используются при фундаментальных исследованиях механизма коррозии, в мероприятих по защите, а также для контроля в эксплуатационных условиях. В этом разделе рассматриваются электрические измерения в лаборатории, цель которых оценить коррозионное поведение металлов и сплавов в условиях службы, не прибегая к более утомительным и продолжительным полевым (натурным) испытаниям. Скорость коррозии, чувствительность металла к контактной коррозии, питтингу, межкристаллитной коррозии можно определять в лаборатории при помощи электрохимических методов для прогнозирования поведения металла в условиях эксплуатации. [c.553]

    Наряду с широко распростраиен-ными методами исследования — длительными коррозионными испытаниями, измерениями электрохимических потенциалов и поляризационных кривых — была разработана и применена методика изучения кинетики и механизма процессов при помощи радиоактивных изотоноп Fe  [c.609]


Смотреть страницы где упоминается термин Электрохимические методы коррозионных испытаний: [c.134]    [c.553]    [c.114]    [c.96]    [c.606]    [c.8]   
Смотреть главы в:

Защита металлов от коррозии лакокрасочными покрытиями -> Электрохимические методы коррозионных испытаний

Защита металлов от коррозии лакокрасочными покрытиями -> Электрохимические методы коррозионных испытаний


Коррозия металлов Книга 1,2 (1952) -- [ c.1027 , c.1037 , c.1080 , c.1094 , c.1095 ]

Коррозия металлов Книга 2 (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Испытания коррозионные

Коррозионные испытания электрохимические

Методы коррозионных испытаний

Методы электрохимические

ЭЛЕКТРОХИМИЧЕСКИЕ И ЭЛЕКТРИЧЕСКИЕ МЕТОДЫ КОРРОЗИОННЫХ ИСПЫТАНИЙ МЕТАЛЛОВ Измерение электродных потенциалов

Электрохимические методы испытаний



© 2025 chem21.info Реклама на сайте