Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Наследственность и ферментативные системы

    В ряде случаев вследствие блокирования действия какого-либо фермента имеет место резкое отставание умственного развития. Вопрос о том, чем обусловлено это торможение психической деятельности токсическим действием ненормально высоких концентраций аминокислот или их метаболитов на мозг, нарушением нормального соотношения аминокислот и, следовательно, биосинтеза белка либо вторичными нарушениями энергетического и других видов обмена—окончательно не решен. Таким образом, идентификация химической реакции или ферментативной системы, нарушение функции которой является первопричиной развития тяжелого наследственного заболевания, в наши дни не только представляет большой теоретический интерес, но в ряде случаев играет решающую роль в диагностике и терапии этих болезней. Всегда следует учитывать, что при блокировании нормального пути обмена какой-либо аминокислоты промежуточные метаболиты, следующие за местом блокирования, становятся незаменимыми при данном заболевании. [c.468]


    Доступность материала для исследования ферментов гликолиза. В настоящее время наследственные повреждения известны почти для всех ферментов гликолиза. Этим гликолиз выделяется среди прочих путей метаболизма, для которых далеко не всегда известно, существуют ли наследуемые дефекты, затрагивающие хотя бы некоторые из ферментов. Проще всего можно объяснить этот факт тем, что необходимую для исследований кровь больных сравнительно легко получить анализ венозной крови больных, находящихся в стационаре, вполне доступен в отличие, например, от соскоба кожи, не говоря уже о биопсии мозга. Кроме того, эритроциты-это высокоспециализированные клетки, поэтому в них функционируют далеко не все ферментативные системы, имеющиеся в других клетках. Таким образом, количество реакций, которые могут быть нарушены, относительно невелико. Это значительно облегчает анализ. [c.17]

    Обмен веществ в клетке или в организме можно определить как совокупность всех химических процессов, которые могут в них протекать. Поэтому обмен веществ даже у простого одноклеточного организма не представляет собой чего-то неизменного — в любой данный момент времени реализуются только одни какие-то его возможности, а другие остаются невыраженными. Естественно возникает вопрос о факторах, контролирующих выражение обмена веществ. Этим факторам, т. е. проблеме регуляции обмена, уделяется в современной биохимии очень большое внимание как в области эксперимента, так и в области теоретических исследований. Регуляция обмена осуществляется с помощью чувствительной системы взаимосвязанных механизмов слежения и настройки, в которую входят и внутренние компоненты (наследственные, генетические) и внешние (обусловленные средой, физиологические). Поскольку все процессы обмена веществ взаимосвязаны во времени и пространстве, образуя единое целое, любые воздействия затрагивают весь обмен в целом, хотя для удобства мы можем в первом приближении сосредоточить наше внимание на какой-либо одной реакции и ее участниках. Считается аксиомой, что весь обмен веществ и его регуляцию можно прямо или косвенно объяснить, исходя из ферментативного оснащения организма. [c.272]

    Важное значение гетероциклических соединений очевидно. Достаточно сказать, что они обеспечивают само функционирование жизни на Земле, внося решающий вклад в механизмы наследственности, дыхания, действия центральной нервной системы и ряда ферментативных систем. Сегодня гетероциклы — это многие сотни высокоэффективных лекарственных препаратов, антибиотиков, пестицидов, основа для создания ценных красителей, люминофоров, термостойких волокон и многих других практически полезных веществ. Неудивительно, что в общем объеме публикаций по органической химии на долю гетероциклов приходится не менее 55%, причем три журнала, издаваемые в СССР, США и Японии, специально посвящены химии гетероциклических соединений. Однако такой прогресс имеет и теневую сторону. Огромный объем фактического материала создает серьезные проблемы для научных исследований и особенно для преподавания этой области органической химии, поскольку нелегким делом становится отбор наиболее существенной информации, ее систематизация и интерпретация. [c.6]


    Как известно, два основных типа передачи наследственной информации в биологических системах, записанной в виде последовательности нуклеотидов ДПК, связаны с филогенезом и онтогенетическим развитием организмов. Структурный подход может быть плодотворным в оценке филогенетической передачи информации, где информационная емкость ДПК реализуется в процессах эволюции. В то же время онтогенетическая реализация записанной в ДПК информации протекает в ходе морфогенетической самоорганизации ферментативных метаболических процессов в организме. Концепция диссипативных самоорганизующихся биологических структур Пригожина (гл. IV) позволяет понять взаимодействие этих двух типов информационных процессов. [c.165]

    Таким образом, при наследственных заболеваниях первичные нарушения обмена отдельных аминокислот чаще всего связаны с синтезом дефектных ферментных белков или их полным отсутствием (ферментопатии, или энзимо-патии). Идентификация химической реакции или ферментативной системы, нарушение функции которой является первопричиной развития тяжелого наследственного заболевания, представляет не только большой теоретический интерес, но и играет решающую роль в диагностике и терапии этих болезней. [c.410]

    Огромные успехи исследований механизмов кодирования наследственной информации и биосинтеза белка, ферментативного катализа и регулирования активности ферментов, действия антибиотиков и гормонов, всей той области изучения живого, которую принято называть молекулярной биологией, приучили всех к мысли о том, что в структурах молекул жизни положение буквально каждого атома строго обусловлено и подчинено выполнению предназначенных для этих молекул биологических функций. Именно в атом смысле принято обычно говорить о специфичности биополимеров, прочно ассоциировавшейся в сознании исследователей с однозначным соответствием между структурой и выполняемой функцией. При таком комплексе стр>т<турного детерминизма трудно было освоиться с представлением о специфичности полисахаридов, для многих из которых характерна статистичность структур, микрогетерогенность и, нередко, хаотичность распределения различных моносахаридных остатков по цепи. И, тем не менее, накапливающийся материал по сложному и высоко специализированному функционированию углевод ных полимеров в живых системах убеждает в том, что и в этой области возможен и необходим перевод функций- нальных свойств биополимеров на язык молекулярных структур, т. е. применим основной принцип молекулярной) [c.162]

    Горизонты энзимологии. В литературе появляются работы, в которых делаются попытки прогнозирования дальнейшего развития энзимологии на ближайшее десятилетие. Перечислим основные направления исследований энзимологии будущего. Во-первых, это исследования более тонких деталей молекулярного механизма и принципов действия ферментов в соответствии с законами югассической органической химии и квантовой механики, а также разработка на этой основе теории ферментативного катализа. Во-вторых, это изучение ферментов на более высоких уровнях (надмолекулярном и клеточном) структурной организации живых систем, причем не столько отдельных ферментов, сколько ферментных комплексов в сложных системах. В-третьих, исследование механизмов регуляции активности и синтеза ферментов и вклада химической модификации в действие ферментов. В-четвертых, будут развиваться исследования в области создания искусственных низкомолекулярных ферментов —синзимов (синтетические аналоги ферментов), наделенных аналогично нативным ферментам высокой специфичностью действия и каталитической активностью, но лишенных побочных антигенных свойств. В-пятых, исследования в области инженерной энзимологии (белковая инженерия), создание гибридных катализаторов, сочетающих свойства ферментов, антител и рецепторов, а также создание биотехнологических реакторов с участием индивидуальных ферментов или полиферментных комплексов, обеспечивающих получение и производство наиболее ценных материалов и средств для народного хозяйства и медицины. Наконец, исследования в области медицинской энзимологии, основной целью которых является выяснение молекулярных основ наследственных и соматических болезней человека, в основе развития которых лежат дефекты синтеза ферментов или нарушения регуляции активности ферментов. [c.117]

    Впервые связь между генами и ферментами была обнаружена уже через несколько лет после повторного открытия менделизма и открытия брожения в бесклеточной системе. Исследуя родословные семей, Арчибальд Гаррод пришел в 1902 г. к выводу, что алкаптонурия, артритическая болезнь человека, которая сопровождается выделением мочи цвета красного вина, является наследственной. Он пришел также к заключению, что это заболевание обусловлено нарушением азотистого обмена, в результате которого вместо обычно содержащейся в моче мочевины выделяется какое-то вещество темного цвета. В 1908 г. Гаррод высказал предположение, что больные алкаптонурией являются гомозиготами по рецессивному гену и что именно по вине этого гена у них не происходит какой-то ферментативной метаболической реакции. Неспособность осуществлять эту реакцию приводит в свою очередь к накоплению и выделению субстрата, который в норме разрушился бы в результате этой реакции. Случаи наследуемой неспособности осуществлять контролируемые генами ферментативные реакции Гаррод назвал врожденными ошибками метаболизма . Однако идеи Гаррода, как и идеи Менделя, по-видимому, [c.113]


    В самом деле, считывание филогенетической информации, записанной в ДПК, приводит к биосинтезу первичной аминокислотной последовательности на рибосомах. Па втором этапе происходит самосворачивание белковой глобулы, развитие ферментативных реакций и самоорганизация живой системы. Характер этих процессов и, в частности, возникающих диссипативных структур, зависит от значений конкретных управляющих параметров метаболизма (гл. IV). Итак, окончательная реализация наследственной информации происходит путем динамического считывания параметрически заданной информации о метаболических процессах, лежащих в основе морфогенеза. [c.165]

    Важность изучения вариантов СбРВ для понимания механизмов недостаточности ферментативных систем у человека. Система G6PD служит замечательной моделью, поскольку у мужчин с мутацией в Х-хромосоме имеется продукт только мутантного гена. Напротив, у гетерозигот по аутосомным мутациям нормальный и измененный продукт представлены в соотношении 1 1, и, следовательно, обнаружить незначительные изменения физико-химических свойств продуктов мутантного гена достаточно сложно. GбPD обладает и некоторыми другими особенностями, позволяющими проводить генетический анализ гораздо более подробно, чем это возможно для большинства наследственных дефектов ферментативных систем человека. [c.26]


Смотреть главы в:

Молекулярные основы жизни -> Наследственность и ферментативные системы




ПОИСК





Смотрите так же термины и статьи:

Наследственность



© 2024 chem21.info Реклама на сайте